Suppr超能文献

用于氧化还原液流电池的高电位多电子正极电解液的方酰胺支架的开发。

Development of the Squaramide Scaffold for High Potential and Multielectron Catholytes for Use in Redox Flow Batteries.

作者信息

Tracy Jacob S, Broderick Conor H, Toste F Dean

机构信息

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Department of Chemistry, University of California, Berkeley, California 94720, United States.

出版信息

J Am Chem Soc. 2024 May 1;146(17):11740-11755. doi: 10.1021/jacs.3c14776. Epub 2024 Apr 17.

Abstract

Nonaqueous organic redox flow batteries (N-ORFBs) are a promising technology for grid-scale storage of energy generated from intermittent renewable sources. Their primary benefit over traditional aqueous RFBs is the wide electrochemical stability window of organic solvents, but the design of catholyte materials, which can exploit the upper range of this window, has proven challenging. We report herein a new class of N-ORFB catholytes in the form of squaric acid quinoxaline (SQX) and squaric acid amide (SQA) materials. Mechanistic investigation of decomposition in battery-relevant conditions via NMR, HRMS, and electrochemical methods enabled a rational design approach to optimizing these scaffolds. Three lead compounds were developed: a highly stable one-electron SQX material with an oxidation potential of 0.51 V vs Fc/Fc that maintained 99% of peak capacity after 102 cycles (51 h) when incorporated into a 1.58 V flow battery; a high-potential one-electron SQA material with an oxidation potential of 0.81 V vs Fc/Fc that demonstrated negligible loss of redox active material as measured by pre- and postcycling CV peak currents when incorporated in a 1.63 V flow battery for 110 cycles over 29 h; and a proof-of-concept two-electron SQA catholyte material with oxidation potentials of 0.48 and 0.85 V vs Fc/Fc that demonstrated a capacity fade of just 0.56% per hour during static H-cell cycling. These findings expand the previously reported space of high-potential catholyte materials and showcase the power of mechanistically informed synthetic design for N-ORFB materials development.

摘要

非水有机氧化还原液流电池(N-ORFBs)是一种很有前途的技术,可用于间歇性可再生能源产生的能量的电网规模存储。与传统的水系液流电池相比,它们的主要优势在于有机溶剂具有较宽的电化学稳定性窗口,但事实证明,能够利用该窗口上限范围的阴极电解液材料的设计具有挑战性。我们在此报告一类新型的N-ORFB阴极电解液,其形式为方酸喹喔啉(SQX)和方酸酰胺(SQA)材料。通过核磁共振(NMR)、高分辨质谱(HRMS)和电化学方法对电池相关条件下的分解进行机理研究,从而实现了一种合理的设计方法来优化这些支架。开发了三种先导化合物:一种高度稳定的单电子SQX材料,相对于Fc/Fc的氧化电位为0.51 V,当将其并入1.58 V的液流电池中时,在102个循环(51小时)后仍保持99%的峰值容量;一种高电位单电子SQA材料,相对于Fc/Fc的氧化电位为0.81 V,当将其并入1.63 V的液流电池中在29小时内进行110个循环时,通过循环前后的循环伏安(CV)峰值电流测量,其氧化还原活性材料的损失可忽略不计;以及一种概念验证的双电子SQA阴极电解液材料,相对于Fc/Fc的氧化电位为0.48和0.85 V,在静态H型电池循环过程中,其容量衰减仅为每小时0.56%。这些发现扩展了先前报道的高电位阴极电解液材料的范围,并展示了基于机理的合成设计在N-ORFB材料开发中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c48/11066874/f479010152a0/ja3c14776_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验