Suppr超能文献

基于物理有机化学方法开发用于氧化还原流电池的环丙烯鎓基储能材料。

A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries.

机构信息

Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States.

Joint Center for Energy Storage Research (JCESR), 9700 S. Cass Avenue, Argonne, Illinois 60439, United States.

出版信息

Acc Chem Res. 2023 May 16;56(10):1239-1250. doi: 10.1021/acs.accounts.3c00095. Epub 2023 Apr 24.

Abstract

ConspectusRedox flow batteries (RFBs) represent a promising modality for electrical energy storage. In these systems, energy is stored via paired redox reactions of molecules on opposite sides of an electrochemical cell. Thus, a central objective for the field is to design molecules with the optimal combination of properties to serve as energy storage materials in RFBs. The ideal molecules should undergo reversible redox reactions at relatively high potentials (for the molecule that is oxidized during battery charging, called the catholyte) or low potentials (for the species that is reduced during battery charging, called the anolyte). Furthermore, anolytes and catholytes must be highly soluble in the electrolyte solution and stable to extended electrochemical cycling in all battery-relevant redox states. The ideal candidates would undergo more than one reversible electron transfer event. Finally, the optimal structures should be resistant to crossover through a selective separator in order to maintain isolation of the two sides of the cell. This Account describes our design and optimization of organic molecules for this application. We first provide background for the metrics and experiments used to characterize anolytes/catholytes and to progress them toward deployment in flow batteries. We then use our studies of aminocyclopropenium-based catholytes to illustrate this workflow and approach.We identified tris(dimethylamino) cyclopropenium hexafluorophosphate as a first-generation catholyte for nonaqueous RFBs based on literature reports from the 1970s describing its reversible chemical and electrochemical oxidation. Cyclic voltammetry and electrochemical cycling experiments in acetonitrile/LiPF confirmed that this molecule undergoes oxidation at relatively high potential (0.86 V versus ferrocene/ferrocenium) and exhibits moderate stability toward charge-discharge cycling. Replacing the methyl groups with isopropyl substituents led to enhanced cycling stability but poor solubility of the radical dication (<0.1 M in acetonitrile). Solubility was optimized using quantitative structure-property relationship modeling, which predicted derivatives with ≥10-fold enhanced solubility. Cyclopropeniums with 300-500 mV higher redox potentials were identified by replacing one of the dialkylamino substituents with a less electron-donating thioalkyl or aryl group. Multielectron catholytes were developed by creating hybrid structures that contain a di(amino) cyclopropenium conjugated with a phenothiazine moeity. Finally, oligomeric tris(amino) cyclopropeniums were designed as crossover resistant catholytes. Optimization of their solubility enabled the deployment of these oligomers in high concentration asymmetric redox flow batteries with energy densities that are comparable to the state-of-the-art commercial aqueous inorganic systems.

摘要

氧化还原液流电池 (RFB) 是一种很有前途的电能存储方式。在这些系统中,能量通过电化学电池两侧的成对氧化还原反应来存储。因此,该领域的一个核心目标是设计具有最佳组合性能的分子,用作 RFB 中的储能材料。理想的分子应该在相对较高的电势下(对于在电池充电过程中被氧化的分子,称为阴极电解液)或较低的电势下(对于在电池充电过程中被还原的物种,称为阳极电解液)发生可逆氧化还原反应。此外,阳极电解液和阴极电解液必须在电解质溶液中高度溶解,并在所有与电池相关的氧化还原态下稳定,以延长电化学循环。理想的候选物应该能够经历不止一次的可逆电子转移事件。最后,最佳结构应该能够抵抗通过选择性分离器的交叉,以保持电池两侧的隔离。本说明描述了我们为该应用设计和优化有机分子的情况。我们首先提供了用于表征阳极电解液/阴极电解液的指标和实验的背景,以推进它们在液流电池中的应用。然后,我们使用我们对基于氨基环丙烯的阴极电解液的研究来说明这个工作流程和方法。我们基于 20 世纪 70 年代描述其可逆化学和电化学氧化的文献报道,将三(二甲氨基)环丙烯六氟磷酸盐鉴定为用于非水 RFB 的第一代阴极电解液。在乙腈/LiPF 中的循环伏安法和电化学循环实验证实,该分子在相对较高的电势(相对于 ferrocene/ferrocenium 为 0.86 V)下发生氧化,并表现出对充放电循环的中等稳定性。用异丙基取代甲基会导致循环稳定性增强,但自由基二阳离子的溶解度较差(在乙腈中<0.1 M)。使用定量结构-性质关系建模优化了溶解度,该模型预测具有≥ 10 倍增强溶解度的衍生物。通过用吸电子的硫烷基或芳基取代一个二烷基氨基取代基,鉴定出氧化还原电位高出 300-500 mV 的环丙烯。通过创建包含二(氨基)环丙烯与吩噻嗪部分的混合结构,开发了多电子阴极电解液。最后,设计了具有聚合三(氨基)环丙烯的抗交叉结构作为阴极电解液。优化其溶解度使这些低聚物能够在高浓度不对称氧化还原液流电池中使用,其能量密度与最先进的商业水性无机系统相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验