Suppr超能文献

径向基函数人工神经网络在膜生物反应器中量化与膜污染相关的界面能中的应用。

Application of radial basis function artificial neural network to quantify interfacial energies related to membrane fouling in a membrane bioreactor.

机构信息

College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.

Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.

出版信息

Bioresour Technol. 2019 Dec;293:122103. doi: 10.1016/j.biortech.2019.122103. Epub 2019 Sep 4.

Abstract

Efficient quantification of interfacial energy related with membrane fouling represents the primary interest in membrane bioreactors (MBRs) as interfacial energy determines foulant layer formation. In this study, radial basis function (RBF) artificial neural networks (ANNs) with five related factors as input variables were applied to quantify interfacial energy with randomly rough membrane surface. It was found that, RBF ANNs could well capture the complex non-linear relationships between the related factors and interfacial energy. RBF ANN quantification showed high regression coefficient and accuracy, suggesting its high capacity to quantify interfacial energy. Compared to at least one-week time consumption of the advanced extensive Derjaguin-Landau-Verwey-Overbeek (XDLVO) approach, quantification by RBF ANNs only took several seconds for a same case, indicating the high efficiency of RBF ANNs. Moreover, the abilities of RBF ANNs can be further improved. The robust RBF ANNs proposed paved a new way to study membrane fouling in MBRs.

摘要

高效量化与膜污染相关的界面能是膜生物反应器(MBRs)的主要关注点,因为界面能决定了污染物层的形成。在这项研究中,采用具有五个相关因素作为输入变量的径向基函数(RBF)人工神经网络(ANNs)来量化随机粗糙膜表面的界面能。结果表明,RBF-ANN 可以很好地捕捉相关因素与界面能之间复杂的非线性关系。RBF-ANN 量化显示出高回归系数和准确性,表明其具有量化界面能的高能力。与先进的广泛德热加伦-兰道-弗韦尔贝克(XDLVO)方法至少需要一周的时间相比,对于相同的情况,RBF-ANN 的量化只需要几秒钟,这表明了 RBF-ANN 的高效率。此外,RBF-ANN 的能力可以进一步提高。所提出的稳健 RBF-ANN 为研究 MBR 中的膜污染开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验