Suppr超能文献

用于二氧化碳脱除的促进传递混合基质膜的多参数神经网络建模

Multiparameter Neural Network Modeling of Facilitated Transport Mixed Matrix Membranes for Carbon Dioxide Removal.

作者信息

Nasir Rizwan, Suleman Humbul, Maqsood Khuram

机构信息

Department of Chemical Engineering, University of Jeddah, Asfan Road, Jeddah 23890, Saudi Arabia.

School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK.

出版信息

Membranes (Basel). 2022 Apr 14;12(4):421. doi: 10.3390/membranes12040421.

Abstract

Membranes for carbon capture have improved significantly with various promoters such as amines and fillers that enhance their overall permeance and selectivity toward a certain particular gas. They require nominal energy input and can achieve bulk separations with lower capital investment. The results of an experiment-based membrane study can be suitably extended for techno-economic analysis and simulation studies, if its process parameters are interconnected to various membrane performance indicators such as permeance for different gases and their selectivity. The conventional modelling approaches for membranes cannot interconnect desired values into a single model. Therefore, such models can be suitably applicable to a particular parameter but would fail for another process parameter. With the help of artificial neural networks, the current study connects the concentrations of various membrane materials (polymer, amine, and filler) and the partial pressures of carbon dioxide and methane to simultaneously correlate three desired outputs in a single model: CO permeance, CH permeance, and CO/CH selectivity. These parameters help predict membrane performance and guide secondary parameters such as membrane life, efficiency, and product purity. The model results agree with the experimental values for a selected membrane, with an average absolute relative error of 6.1%, 4.2%, and 3.2% for CO permeance, CH permeance, and CO/CH selectivity, respectively. The results indicate that the model can predict values at other membrane development conditions.

摘要

用于碳捕获的膜已经通过各种促进剂(如胺类和填料)得到了显著改善,这些促进剂提高了膜对特定气体的整体渗透率和选择性。它们需要的能量输入很低,并且可以以较低的资本投资实现大规模分离。如果基于实验的膜研究的工艺参数与各种膜性能指标(如不同气体的渗透率及其选择性)相互关联,那么其结果可以适当地扩展用于技术经济分析和模拟研究。传统的膜建模方法无法将所需值相互关联到一个单一模型中。因此,此类模型可能适用于特定参数,但对于另一个工艺参数则会失效。借助人工神经网络,本研究将各种膜材料(聚合物、胺类和填料)的浓度以及二氧化碳和甲烷的分压联系起来,以便在一个单一模型中同时关联三个所需输出:CO渗透率、CH渗透率和CO/CH选择性。这些参数有助于预测膜性能,并指导诸如膜寿命、效率和产品纯度等二级参数。对于选定的膜,模型结果与实验值相符,CO渗透率、CH渗透率和CO/CH选择性的平均绝对相对误差分别为6.1%、4.2%和3.2%。结果表明,该模型可以预测其他膜开发条件下的值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e11c/9028914/4c1b08f2b6dd/membranes-12-00421-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验