Suppr超能文献

基于多种人格问卷数据和支持向量机的中国大学生网络成瘾障碍检测

Internet addiction disorder detection of Chinese college students using several personality questionnaire data and support vector machine.

作者信息

Di Zonglin, Gong Xiaoliang, Shi Jingyu, Ahmed Hosameldin O A, Nandi Asoke K

机构信息

School of Electronic and Information Engineering, Tongji University, Shanghai, China.

East Hospital, Tongji University School of Medicine, Shanghai 200120, China.

出版信息

Addict Behav Rep. 2019 Jul 11;10:100200. doi: 10.1016/j.abrep.2019.100200. eCollection 2019 Dec.

Abstract

With the unprecedented development of the Internet, it also brings the challenge of Internet Addiction (IA), which is hard to diagnose and cure according to the state-of-art research. In this study, we explored the feasibility of machine learning methods to detect IA. We acquired a dataset consisting of 2397 Chinese college students from the University (Age: 19.17 ± 0.70, Male: 64.17%) who completed Brief Self Control Scale (BSCS), the 11th version of Barratt Impulsiveness Scale (BIS-11), Chinese Big Five Personality Inventory (CBF-PI) and Chen Internet Addiction Scale (CIAS), where CBF-PI includes five sub-features (Openness, Extraversion, Conscientiousness, Agreeableness, and Neuroticism) and BSCS includes three sub-features (Attention, Motor and Non-planning). We applied Student's -test on the dataset for feature selection and Support Vector Machines (SVMs) including C-SVM and -SVM with grid search for the classification and parameters optimization. This work illustrates that SVM is a reliable method for the assessment of IA and questionnaire data analysis. The best detection performance of IA is 96.32% which was obtained by C-SVM in the 6-feature dataset without normalization. Finally, the BIS-11, BSCS, Motor, Neuroticism, Non-planning, and Conscientiousness are shown to be promising features for the detection of IA.

摘要

随着互联网的空前发展,它也带来了网络成瘾(IA)的挑战,根据现有研究,这种成瘾难以诊断和治愈。在本研究中,我们探讨了机器学习方法检测网络成瘾的可行性。我们获取了一个数据集,该数据集由来自某大学的2397名中国大学生组成(年龄:19.17 ± 0.70,男性:64.17%),他们完成了简短自我控制量表(BSCS)、第11版巴拉特冲动性量表(BIS - 11)、中国大五人格量表(CBF - PI)和陈网络成瘾量表(CIAS),其中CBF - PI包括五个子特征(开放性、外向性、尽责性、宜人性和神经质),BSCS包括三个子特征(注意力、行为和非计划性)。我们对数据集应用学生t检验进行特征选择,并使用支持向量机(SVM)(包括C - SVM和ν - SVM)并通过网格搜索进行分类和参数优化。这项工作表明,支持向量机是评估网络成瘾和问卷数据分析的可靠方法。在未进行归一化处理的6特征数据集中,C - SVM获得的网络成瘾最佳检测性能为96.32%。最后,结果表明BIS - 11、BSCS、行为、神经质、非计划性和尽责性是检测网络成瘾很有前景的特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b73/6726843/fbee5cb9d57e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验