Suppr超能文献

基于机器学习算法的大学生手机成瘾模型影响因素细分与智能预测模型构建

Construction of influencing factor segmentation and intelligent prediction model of college students' cell phone addiction model based on machine learning algorithm.

作者信息

Hong Yun, Rong Xing, Liu Wei

机构信息

Jiyang College, Zhejiang A&F University, Zhuji, Zhejiang, 311800, China.

Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.

出版信息

Heliyon. 2024 Apr 4;10(8):e29245. doi: 10.1016/j.heliyon.2024.e29245. eCollection 2024 Apr 30.

Abstract

Mobile phone addiction among college students has emerged as a prevalent phenomenon in contemporary society, posing significant challenges to the development and well-being of these individuals. The assessment of the extent of mobile phone addiction has become an urgent concern in the present context. This study employed a sample of 3000 college students from a public university in Zhejiang Province, China, to gather questionnaire data. By utilizing a machine learning algorithm, we identified the most salient factors associated with college students' addiction, with perfectionism emerging as the primary influencer. Additionally, a machine learning-based prediction model for college students' cell phone addiction was developed, yielding a prediction accuracy of 76.68%. This intelligent model can serve as a reliable tool for subsequent evaluations of college students' cell phone addiction.

摘要

大学生手机成瘾已成为当代社会的一个普遍现象,给这些人的发展和幸福带来了重大挑战。在当前背景下,评估手机成瘾的程度已成为一个紧迫问题。本研究以中国浙江省一所公立大学的3000名大学生为样本,收集问卷数据。通过使用机器学习算法,我们确定了与大学生成瘾相关的最显著因素,其中完美主义成为主要影响因素。此外,还开发了一个基于机器学习的大学生手机成瘾预测模型,预测准确率为76.68%。这个智能模型可以作为后续评估大学生手机成瘾的可靠工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56eb/11024546/43b8a7ab89f8/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验