Kürüm Ulas, Wiecha Peter R, French Rebecca, Muskens Otto L
Opt Express. 2019 Jul 22;27(15):20965-20979. doi: 10.1364/OE.27.020965.
We demonstrate the use of deep learning for fast spectral deconstruction of speckle patterns. The artificial neural network can be effectively trained using numerically constructed multispectral datasets taken from a measured spectral transmission matrix. Optimized neural networks trained on these datasets achieve reliable reconstruction of both discrete and continuous spectra from a monochromatic camera image. Deep learning is compared to analytical inversion methods as well as to a compressive sensing algorithm and shows favourable characteristics both in the oversampling and in the sparse undersampling (compressive) regimes. The deep learning approach offers significant advantages in robustness to drift or noise and in reconstruction speed. In a proof-of-principle demonstrator we achieve real time recovery of hyperspectral information using a multi-core, multi-mode fiber array as a random scattering medium.
我们展示了深度学习在散斑图案快速光谱解构中的应用。使用从测量的光谱传输矩阵获取的数值构建多光谱数据集,可以有效地训练人工神经网络。在这些数据集上训练的优化神经网络能够从单色相机图像可靠地重建离散光谱和连续光谱。将深度学习与解析反演方法以及压缩感知算法进行了比较,结果表明,在过采样和稀疏欠采样(压缩)情况下,深度学习都具有良好的特性。深度学习方法在抗漂移或抗噪声能力以及重建速度方面具有显著优势。在原理验证演示器中,我们使用多核多模光纤阵列作为随机散射介质实现了高光谱信息的实时恢复。