Suppr超能文献

基于深度学习网络的多模光纤传输

Multimode optical fiber transmission with a deep learning network.

作者信息

Rahmani Babak, Loterie Damien, Konstantinou Georgia, Psaltis Demetri, Moser Christophe

机构信息

1Ecole Polytechnique Fédérale de Lausanne, Laboratory of Applied Photonics Devices, CH-1015 Lausanne, Switzerland.

2Ecole Polytechnique Fédérale de Lausanne, Laboratory of Optics, CH-1015 Lausanne, Switzerland.

出版信息

Light Sci Appl. 2018 Oct 3;7:69. doi: 10.1038/s41377-018-0074-1. eCollection 2018.

Abstract

Multimode fibers (MMFs) are an example of a highly scattering medium, which scramble the coherent light propagating within them to produce seemingly random patterns. Thus, for applications such as imaging and image projection through an MMF, careful measurements of the relationship between the inputs and outputs of the fiber are required. We show, as a proof of concept, that a deep neural network can learn the input-output relationship in a 0.75 m long MMF. Specifically, we demonstrate that a deep convolutional neural network (CNN) can learn the nonlinear relationships between the amplitude of the speckle pattern (phase information lost) obtained at the output of the fiber and the phase or the amplitude at the input of the fiber. Effectively, the network performs a nonlinear inversion task. We obtained image fidelities (correlations) as high as ~98% for reconstruction and ~94% for image projection in the MMF compared with the image recovered using the full knowledge of the system transmission characterized with the complex measured matrix. We further show that the network can be trained for transfer learning, i.e., it can transmit images through the MMF, which belongs to another class not used for training/testing.

摘要

多模光纤(MMF)是一种高度散射介质的例子,它会扰乱在其中传播的相干光,以产生看似随机的图案。因此,对于诸如通过MMF进行成像和图像投影等应用,需要仔细测量光纤输入和输出之间的关系。作为概念验证,我们表明深度神经网络可以学习0.75米长的MMF中的输入-输出关系。具体而言,我们证明了深度卷积神经网络(CNN)可以学习在光纤输出端获得的散斑图案(相位信息丢失)的幅度与光纤输入端的相位或幅度之间的非线性关系。实际上,该网络执行非线性反演任务。与使用通过复杂测量矩阵表征的系统传输的全部知识恢复的图像相比,我们在MMF中进行重建时获得的图像保真度(相关性)高达约98%,在图像投影时高达约94%。我们进一步表明,该网络可以进行迁移学习训练,即它可以通过属于另一类未用于训练/测试的MMF传输图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b953/6168552/17b5977f31c6/41377_2018_74_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验