Hu Xiaowen, Zhao Jian, Antonio-Lopez Jose Enrique, Correa Rodrigo Amezcua, Schülzgen Axel
CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA.
The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Light Sci Appl. 2023 May 23;12(1):125. doi: 10.1038/s41377-023-01183-6.
Recent years have witnessed the tremendous development of fusing fiber-optic imaging with supervised deep learning to enable high-quality imaging of hard-to-reach areas. Nevertheless, the supervised deep learning method imposes strict constraints on fiber-optic imaging systems, where the input objects and the fiber outputs have to be collected in pairs. To unleash the full potential of fiber-optic imaging, unsupervised image reconstruction is in demand. Unfortunately, neither optical fiber bundles nor multimode fibers can achieve a point-to-point transmission of the object with a high sampling density, as is a prerequisite for unsupervised image reconstruction. The recently proposed disordered fibers offer a new solution based on the transverse Anderson localization. Here, we demonstrate unsupervised full-color imaging with a cellular resolution through a meter-long disordered fiber in both transmission and reflection modes. The unsupervised image reconstruction consists of two stages. In the first stage, we perform a pixel-wise standardization on the fiber outputs using the statistics of the objects. In the second stage, we recover the fine details of the reconstructions through a generative adversarial network. Unsupervised image reconstruction does not need paired images, enabling a much more flexible calibration under various conditions. Our new solution achieves full-color high-fidelity cell imaging within a working distance of at least 4 mm by only collecting the fiber outputs after an initial calibration. High imaging robustness is also demonstrated when the disordered fiber is bent with a central angle of 60°. Moreover, the cross-domain generality on unseen objects is shown to be enhanced with a diversified object set.
近年来,光纤成像与监督深度学习的融合取得了巨大发展,能够对难以到达的区域进行高质量成像。然而,监督深度学习方法对光纤成像系统施加了严格的限制,其中输入对象和光纤输出必须成对收集。为了充分发挥光纤成像的潜力,无监督图像重建成为了需求。不幸的是,无论是光纤束还是多模光纤都无法以高采样密度实现对象的点对点传输,而这是无监督图像重建的前提条件。最近提出的无序光纤基于横向安德森局域化提供了一种新的解决方案。在这里,我们通过一根一米长的无序光纤在透射和反射模式下展示了具有细胞分辨率的无监督全彩成像。无监督图像重建包括两个阶段。在第一阶段,我们利用对象的统计信息对光纤输出进行逐像素标准化。在第二阶段,我们通过生成对抗网络恢复重建的精细细节。无监督图像重建不需要成对的图像,能够在各种条件下实现更加灵活的校准。我们的新解决方案仅在初始校准后收集光纤输出,就能在至少4毫米的工作距离内实现全彩高保真细胞成像。当无序光纤以60°的中心角弯曲时,也展示了高成像鲁棒性。此外,通过多样化的对象集,对未见对象的跨域通用性得到了增强。