Suppr超能文献

通过一种新型的张量-张量分解算法预测广泛的人类细胞系的药物诱导转录组反应。

Predicting drug-induced transcriptome responses of a wide range of human cell lines by a novel tensor-train decomposition algorithm.

机构信息

Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan.

Graduate School of Engineering, Saitama Institute of Technology, Fukaya, Saitama, Japan.

出版信息

Bioinformatics. 2019 Jul 15;35(14):i191-i199. doi: 10.1093/bioinformatics/btz313.

Abstract

MOTIVATION

Genome-wide identification of the transcriptomic responses of human cell lines to drug treatments is a challenging issue in medical and pharmaceutical research. However, drug-induced gene expression profiles are largely unknown and unobserved for all combinations of drugs and human cell lines, which is a serious obstacle in practical applications.

RESULTS

Here, we developed a novel computational method to predict unknown parts of drug-induced gene expression profiles for various human cell lines and predict new drug therapeutic indications for a wide range of diseases. We proposed a tensor-train weighted optimization (TT-WOPT) algorithm to predict the potential values for unknown parts in tensor-structured gene expression data. Our results revealed that the proposed TT-WOPT algorithm can accurately reconstruct drug-induced gene expression data for a range of human cell lines in the Library of Integrated Network-based Cellular Signatures. The results also revealed that in comparison with the use of original gene expression profiles, the use of imputed gene expression profiles improved the accuracy of drug repositioning. We also performed a comprehensive prediction of drug indications for diseases with gene expression profiles, which suggested many potential drug indications that were not predicted by previous approaches.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

全基因组识别人类细胞系对药物治疗的转录组反应是医学和药物研究中的一个具有挑战性的问题。然而,对于所有药物和人类细胞系的组合,药物诱导的基因表达谱在很大程度上是未知的和未观察到的,这是实际应用中的一个严重障碍。

结果

在这里,我们开发了一种新的计算方法,用于预测各种人类细胞系中药物诱导基因表达谱的未知部分,并预测广泛疾病的新药物治疗适应症。我们提出了张量训练加权优化(TT-WOPT)算法,用于预测张量结构基因表达数据中未知部分的潜在值。我们的结果表明,所提出的 TT-WOPT 算法可以准确地重建一系列人类细胞系在基于整合网络的细胞特征库中药物诱导的基因表达数据。结果还表明,与使用原始基因表达谱相比,使用插补基因表达谱提高了药物重定位的准确性。我们还对具有基因表达谱的疾病进行了药物适应症的综合预测,这表明了许多以前的方法没有预测到的潜在药物适应症。

补充信息

补充数据可在生物信息学在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce56/6612872/73770b0ec198/btz313f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验