Suppr超能文献

一种用于高时空分辨率反演土壤湿度的校准/分解耦合方案:SMAP被动微波、MODIS/陆地卫星光学/热数据与哨兵-1雷达数据之间的协同作用

A Calibration/Disaggregation Coupling Scheme for Retrieving Soil Moisture at High Spatio-Temporal Resolution: Synergy between SMAP Passive Microwave, MODIS/Landsat Optical/Thermal and Sentinel-1 Radar Data.

作者信息

Ojha Nitu, Merlin Olivier, Amazirh Abdelhakim, Ouaadi Nadia, Rivalland Vincent, Jarlan Lionel, Er-Raki Salah, Escorihuela Maria Jose

机构信息

CESBIO, Université de Toulouse, CNES/CNRS/INRA, IRD/UPS, 31400 Toulouse, France.

Center for Remote Sensing Applications (CRSA), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco.

出版信息

Sensors (Basel). 2021 Nov 8;21(21):7406. doi: 10.3390/s21217406.

Abstract

Soil moisture (SM) data are required at high spatio-temporal resolution-typically the crop field scale every 3-6 days-for agricultural and hydrological purposes. To provide such high-resolution SM data, many remote sensing methods have been developed from passive microwave, active microwave and thermal data. Despite the pros and cons of each technique in terms of spatio-temporal resolution and their sensitivity to perturbing factors such as vegetation cover, soil roughness and meteorological conditions, there is currently no synergistic approach that takes advantage of all relevant (passive, active microwave and thermal) remote sensing data. In this context, the objective of the paper is to develop a new algorithm that combines SMAP L-band passive microwave, MODIS/Landsat optical/thermal and Sentinel-1 C-band radar data to provide SM data at the field scale at the observation frequency of Sentinel-1. In practice, it is a three-step procedure in which: (1) the 36 km resolution SMAP SM data are disaggregated at 100 m resolution using MODIS/Landsat optical/thermal data on clear sky days, (2) the 100 m resolution disaggregated SM data set is used to calibrate a radar-based SM retrieval model and (3) the so-calibrated radar model is run at field scale on each Sentinel-1 overpass. The calibration approach also uses a vegetation descriptor as ancillary data that is derived either from optical (Sentinel-2) or radar (Sentinel-1) data. Two radar models (an empirical linear regression model and a non-linear semi-empirical formulation derived from the water cloud model) are tested using three vegetation descriptors (NDVI, polarization ratio (PR) and radar coherence (CO)) separately. Both models are applied over three experimental irrigated and rainfed wheat crop sites in central Morocco. The field-scale temporal correlation between predicted and in situ SM is in the range of 0.66-0.81 depending on the retrieval configuration. Based on this data set, the linear radar model using PR as a vegetation descriptor offers a relatively good compromise between precision and robustness all throughout the agricultural season with only three parameters to set. The proposed synergistical approach combining multi-resolution/multi-sensor SM-relevant data offers the advantage of not requiring in situ measurements for calibration.

摘要

为了满足农业和水文领域的需求,需要高时空分辨率的土壤湿度(SM)数据,通常要求在农田尺度上每3至6天获取一次数据。为了提供如此高分辨率的SM数据,人们已经从被动微波、主动微波和热数据中开发了许多遥感方法。尽管每种技术在时空分辨率以及对植被覆盖、土壤粗糙度和气象条件等干扰因素的敏感性方面都有优缺点,但目前还没有一种能综合利用所有相关(被动、主动微波和热)遥感数据的协同方法。在此背景下,本文的目标是开发一种新算法,该算法结合SMAP L波段被动微波、MODIS/陆地卫星光学/热数据和哨兵-1 C波段雷达数据,以哨兵-1的观测频率在田间尺度上提供SM数据。实际上,这是一个三步过程:(1)在晴空条件下,利用MODIS/陆地卫星光学/热数据将36公里分辨率的SMAP SM数据分解为100米分辨率;(2)利用100米分辨率的分解SM数据集校准基于雷达的SM反演模型;(3)在每次哨兵-1过境时,在田间尺度上运行经过如此校准的雷达模型。校准方法还使用植被描述符作为辅助数据,该描述符可从光学(哨兵-2)或雷达(哨兵-1)数据中得出。分别使用三种植被描述符(归一化植被指数(NDVI)、极化率(PR)和雷达相干性(CO))对两种雷达模型(经验线性回归模型和从水云模型导出的非线性半经验公式)进行了测试。这两种模型都应用于摩洛哥中部的三个实验性灌溉和雨养小麦作物站点。根据反演配置的不同,预测的和原位的SM之间的田间尺度时间相关性在0.66至0.81之间。基于该数据集,使用PR作为植被描述符的线性雷达模型在整个农业季节中,在精度和稳健性之间提供了相对较好的平衡,只需设置三个参数。所提出的结合多分辨率/多传感器与SM相关数据的协同方法具有无需原位测量进行校准的优点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29d7/8587289/3510a4e7cb1a/sensors-21-07406-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验