Suppr超能文献

DNA 序列是四联体动态的主要决定因素。

DNA Sequence Is a Major Determinant of Tetrasome Dynamics.

机构信息

Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.

Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.

出版信息

Biophys J. 2019 Dec 3;117(11):2217-2227. doi: 10.1016/j.bpj.2019.07.055. Epub 2019 Aug 21.

Abstract

Eukaryotic genomes are hierarchically organized into protein-DNA assemblies for compaction into the nucleus. Nucleosomes, with the (H3-H4) tetrasome as a likely intermediate, are highly dynamic in nature by way of several different mechanisms. We have recently shown that tetrasomes spontaneously change the direction of their DNA wrapping between left- and right-handed conformations, which may prevent torque buildup in chromatin during active transcription or replication. DNA sequence has been shown to strongly affect nucleosome positioning throughout chromatin. It is not known, however, whether DNA sequence also impacts the dynamic properties of tetrasomes. To address this question, we examined tetrasomes assembled on a high-affinity DNA sequence using freely orbiting magnetic tweezers. In this context, we also studied the effects of mono- and divalent salts on the flipping dynamics. We found that neither DNA sequence nor altered buffer conditions affect overall tetrasome structure. In contrast, tetrasomes bound to high-affinity DNA sequences showed significantly altered flipping kinetics, predominantly via a reduction in the lifetime of the canonical state of left-handed wrapping. Increased mono- and divalent salt concentrations counteracted this behavior. Thus, our study indicates that high-affinity DNA sequences impact not only the positioning of the nucleosome but that they also endow the subnucleosomal tetrasome with enhanced conformational plasticity. This may provide a means to prevent histone loss upon exposure to torsional stress, thereby contributing to the integrity of chromatin at high-affinity sites.

摘要

真核生物基因组通过多种不同的机制,在蛋白质-DNA 复合物的水平上被高度组织化,以便压缩进细胞核内。核小体及其(H3-H4)四聚体可能作为中间体,具有高度的动态性。我们最近发现,四聚体可以自发地在左手和右手构象之间改变其 DNA 缠绕的方向,这可能有助于在活跃的转录或复制过程中防止染色质中产生扭矩。已有研究表明,DNA 序列强烈影响整个染色质中核小体的定位。然而,目前尚不清楚 DNA 序列是否也会影响四聚体的动态特性。为了解决这个问题,我们使用自由旋转的磁镊研究了在高亲和力 DNA 序列上组装的四聚体。在这种情况下,我们还研究了单离子和二价盐对翻转动力学的影响。我们发现,无论是 DNA 序列还是改变的缓冲条件都不会影响四聚体的整体结构。相比之下,与高亲和力 DNA 序列结合的四聚体显示出明显改变的翻转动力学,主要是通过减少左手缠绕的典型状态的寿命来实现。增加单离子和二价盐浓度可以抵消这种行为。因此,我们的研究表明,高亲和力 DNA 序列不仅影响核小体的定位,而且赋予亚核小体四聚体增强的构象可塑性。这可能为防止暴露于扭转应力时组蛋白丢失提供了一种手段,从而有助于高亲和力位点处染色质的完整性。

相似文献

1
DNA Sequence Is a Major Determinant of Tetrasome Dynamics.
Biophys J. 2019 Dec 3;117(11):2217-2227. doi: 10.1016/j.bpj.2019.07.055. Epub 2019 Aug 21.
2
Comparing the Assembly and Handedness Dynamics of (H3.3-H4)2 Tetrasomes to Canonical Tetrasomes.
PLoS One. 2015 Oct 27;10(10):e0141267. doi: 10.1371/journal.pone.0141267. eCollection 2015.
5
Nucleosome assembly dynamics involve spontaneous fluctuations in the handedness of tetrasomes.
Cell Rep. 2015 Jan 13;10(2):216-25. doi: 10.1016/j.celrep.2014.12.022. Epub 2015 Jan 8.
8
Dynamics of nucleosomal structures measured by high-speed atomic force microscopy.
Small. 2015 Feb 25;11(8):976-84. doi: 10.1002/smll.201401318. Epub 2014 Oct 21.
9
Nucleosome composition regulates the histone H3 tail conformational ensemble and accessibility.
Nucleic Acids Res. 2021 May 7;49(8):4750-4767. doi: 10.1093/nar/gkab246.
10
The activity of the histone chaperone yeast Asf1 in the assembly and disassembly of histone H3/H4-DNA complexes.
Nucleic Acids Res. 2011 Jul;39(13):5449-58. doi: 10.1093/nar/gkr097. Epub 2011 Mar 29.

引用本文的文献

1
Histone tetrasome dynamics affects chromatin transcription.
Nucleic Acids Res. 2025 Apr 22;53(8). doi: 10.1093/nar/gkaf356.
2
Dynamics of nucleosomes and chromatin fibers revealed by single-molecule measurements.
BMB Rep. 2025 Jan;58(1):24-32. doi: 10.5483/BMBRep.2024-0191.
5
DNAcycP: a deep learning tool for DNA cyclizability prediction.
Nucleic Acids Res. 2022 Apr 8;50(6):3142-3154. doi: 10.1093/nar/gkac162.
6
Histone chaperone-mediated co-expression assembly of tetrasomes and nucleosomes.
FEBS Open Bio. 2021 Nov;11(11):2912-2920. doi: 10.1002/2211-5463.13311. Epub 2021 Oct 19.

本文引用的文献

1
Probing Chromatin Structure with Magnetic Tweezers.
Methods Mol Biol. 2018;1814:297-323. doi: 10.1007/978-1-4939-8591-3_18.
3
Single-molecule force spectroscopy on histone H4 tail-cross-linked chromatin reveals fiber folding.
J Biol Chem. 2017 Oct 20;292(42):17506-17513. doi: 10.1074/jbc.M117.791830. Epub 2017 Aug 30.
4
Controlling gene expression by DNA mechanics: emerging insights and challenges.
Biophys Rev. 2016 Sep;8(3):259-268. doi: 10.1007/s12551-016-0216-8. Epub 2016 Aug 20.
5
Probing the salt dependence of the torsional stiffness of DNA by multiplexed magnetic torque tweezers.
Nucleic Acids Res. 2017 Jun 2;45(10):5920-5929. doi: 10.1093/nar/gkx280.
6
Recent insights from in vitro single-molecule studies into nucleosome structure and dynamics.
Biophys Rev. 2016;8(Suppl 1):33-49. doi: 10.1007/s12551-016-0212-z. Epub 2016 Oct 18.
7
RNA Polymerase II Regulates Topoisomerase 1 Activity to Favor Efficient Transcription.
Cell. 2016 Apr 7;165(2):357-71. doi: 10.1016/j.cell.2016.02.036.
8
Nucleosome dynamics: Sequence matters.
Adv Colloid Interface Sci. 2016 Jun;232:101-113. doi: 10.1016/j.cis.2016.01.007. Epub 2016 Feb 4.
9
Comparing the Assembly and Handedness Dynamics of (H3.3-H4)2 Tetrasomes to Canonical Tetrasomes.
PLoS One. 2015 Oct 27;10(10):e0141267. doi: 10.1371/journal.pone.0141267. eCollection 2015.
10
A novel hybrid single molecule approach reveals spontaneous DNA motion in the nucleosome.
Nucleic Acids Res. 2015 Sep 30;43(17):e111. doi: 10.1093/nar/gkv549. Epub 2015 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验