Nho Sihyeong, Kim Hajin
Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea.
BMB Rep. 2025 Jan;58(1):24-32. doi: 10.5483/BMBRep.2024-0191.
The nucleosome is the fundamental structural unit of chromosome fibers. DNA wraps around a histone octamer to form a nucleosome while neighboring nucleosomes interact to form higher-order structures and fit gigabase-long DNAs into a small volume of the nucleus. Nucleosomes interrupt the access of transcription factors to a genomic region and provide regulatory controls of gene expression. Biochemical and physical cues stimulate wrapping-unwrapping and condensation-decondensation dynamics of nucleosomes and nucleosome arrays. Nucleosome dynamics and chromatin fiber organization are influenced by changes in the ionic background within the nucleus, post-translational modifications of histone proteins, and DNA sequence characteristics, such as histone-binding motifs and nucleosome spacing. Biochemical and biophysical measurements, along with in silico simulations, have been extensively used to study the regulatory effects on chromatin dynamics. In particular, single-molecule measurements have revealed novel mechanistic details of nucleosome and chromatin dynamics. This minireview elucidates recent findings on chromatin dynamics from these approaches. [BMB Reports 2025; 58(1): 24-32].
核小体是染色体纤维的基本结构单位。DNA缠绕在组蛋白八聚体周围形成核小体,而相邻的核小体相互作用形成更高层次的结构,并将千兆碱基长的DNA装入细胞核的小空间内。核小体阻碍转录因子进入基因组区域,并对基因表达进行调控。生化和物理信号刺激核小体及核小体阵列的缠绕-解缠绕和凝聚-解凝聚动态变化。核小体动态变化和染色质纤维组织受细胞核内离子背景变化、组蛋白的翻译后修饰以及DNA序列特征(如组蛋白结合基序和核小体间距)的影响。生化和生物物理测量以及计算机模拟已被广泛用于研究对染色质动态变化的调控作用。特别是,单分子测量揭示了核小体和染色质动态变化的新机制细节。本综述阐述了从这些方法中获得的关于染色质动态变化的最新发现。[《BMB报告》2025年;58(1): 24-32]