Suppr超能文献

生化定时器的设计原则:区分瞬态和持续刺激的电路。

The Design Principles of Biochemical Timers: Circuits that Discriminate between Transient and Sustained Stimulation.

机构信息

Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.

Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Cell Design Initiative, University of California, San Francisco, San Francisco, CA 94158, USA.

出版信息

Cell Syst. 2019 Sep 25;9(3):297-308.e2. doi: 10.1016/j.cels.2019.07.008. Epub 2019 Sep 11.

Abstract

Many cellular responses for which timing is critical display temporal filtering-the ability to suppress response until stimulated for longer than a given minimal time. To identify biochemical circuits capable of kinetic filtering, we comprehensively searched the space of three-node enzymatic networks. We define a metric of "temporal ultrasensitivity," the steepness of activation as a function of stimulus duration. We identified five classes of core network motifs capable of temporal filtering, each with distinct functional properties such as rejecting high-frequency noise, committing to response (bistability), and distinguishing between long stimuli. Combinations of the two most robust motifs, double inhibition (DI) and positive feedback with AND logic (PF), underlie several natural timer circuits involved in processes such as cell cycle transitions, T cell activation, and departure from the pluripotent state. The biochemical network motifs described in this study form a basis for understanding common ways cells make dynamic decisions.

摘要

许多对时间敏感的细胞反应表现出时间滤波的能力——即在受到刺激超过给定最小时间之前,抑制反应的能力。为了识别能够进行动力学滤波的生化电路,我们全面搜索了三节点酶网络的空间。我们定义了“时间超敏性”的度量标准,即作为刺激持续时间函数的激活陡峭度。我们确定了五类能够进行时间滤波的核心网络基元,每个基元都具有不同的功能特性,例如拒绝高频噪声、响应承诺(双稳性)和区分长刺激。两种最稳健的基元——双抑制(DI)和具有 AND 逻辑的正反馈(PF)的组合——是参与细胞周期转换、T 细胞激活和从多能状态脱离等过程的几个自然计时器电路的基础。本研究中描述的生化网络基元为理解细胞做出动态决策的常见方式提供了基础。

相似文献

2
Polyphasic feedback enables tunable cellular timers.多相反馈可实现可调细胞定时器。
Curr Biol. 2014 Oct 20;24(20):R994-5. doi: 10.1016/j.cub.2014.08.030. Epub 2014 Oct 21.
3
Robust network topologies for generating switch-like cellular responses.生成开关式细胞响应的鲁棒网络拓扑。
PLoS Comput Biol. 2011 Jun;7(6):e1002085. doi: 10.1371/journal.pcbi.1002085. Epub 2011 Jun 23.
4
Processing Oscillatory Signals by Incoherent Feedforward Loops.通过非相干前馈回路处理振荡信号
PLoS Comput Biol. 2016 Sep 13;12(9):e1005101. doi: 10.1371/journal.pcbi.1005101. eCollection 2016 Sep.
6
Design principles of biochemical oscillators.生化振荡器的设计原理。
Nat Rev Mol Cell Biol. 2008 Dec;9(12):981-91. doi: 10.1038/nrm2530. Epub 2008 Oct 30.

引用本文的文献

6
Controlling gene expression timing through gene regulatory architecture.通过基因调控结构控制基因表达的时间。
PLoS Comput Biol. 2022 Jan 18;18(1):e1009745. doi: 10.1371/journal.pcbi.1009745. eCollection 2022 Jan.
8
A synthetic gene circuit for imaging-free detection of signaling pulses.用于无成像检测信号脉冲的合成基因电路。
Cell Syst. 2022 Feb 16;13(2):131-142.e13. doi: 10.1016/j.cels.2021.10.002. Epub 2021 Nov 4.

本文引用的文献

2
Optimal Regulatory Circuit Topologies for Fold-Change Detection.最优调控回路拓扑结构用于折叠变化检测。
Cell Syst. 2017 Feb 22;4(2):171-181.e8. doi: 10.1016/j.cels.2016.12.009. Epub 2017 Jan 11.
5
Design principles of the yeast G1/S switch.酵母 G1/S 转换的设计原则。
PLoS Biol. 2013 Oct;11(10):e1001673. doi: 10.1371/journal.pbio.1001673. Epub 2013 Oct 1.
6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验