Suppr超能文献

结构光成像在保乳手术中的应用,第二部分:纹理分析和分类。

Structured light imaging for breast-conserving surgery, part II: texture analysis and classification.

机构信息

Thayer School of Engineering at Dartmouth, Optics in Medicine, Hanover, New Hampshire, United States.

Geisel School of Medicine at Dartmouth, Department of Surgery, Hanover, New Hampshire, United States.

出版信息

J Biomed Opt. 2019 Sep;24(9):1-12. doi: 10.1117/1.JBO.24.9.096003.

Abstract

Subdiffuse spatial frequency domain imaging (sd-SFDI) data of 42 freshly excised, bread-loafed tumor resections from breast-conserving surgery (BCS) were evaluated using texture analysis and a machine learning framework for tissue classification. Resections contained 56 regions of interest (RoIs) determined by expert histopathological analysis. RoIs were coregistered with sd-SFDI data and sampled into ∼4  ×  4  mm2 subimage samples of confirmed and homogeneous histological categories. Sd-SFDI reflectance textures were analyzed using gray-level co-occurrence matrix pixel statistics, image primitives, and power spectral density curve parameters. Texture metrics exhibited statistical significance (p-value  <  0.05) between three benign and three malignant tissue subtypes. Pairs of benign and malignant subtypes underwent texture-based, binary classification with correlation-based feature selection. Classification performance was evaluated using fivefold cross-validation and feature grid searching. Classification using subdiffuse, monochromatic reflectance (illumination spatial frequency of fx  =  1.37  mm  −  1, optical wavelength of λ  =  490  nm) achieved accuracies ranging from 0.55 (95% CI: 0.41 to 0.69) to 0.95 (95% CI: 0.90 to 1.00) depending on the benign–malignant diagnosis pair. Texture analysis of sd-SFDI data maintains the spatial context within images, is free of light transport model assumptions, and may provide an alternative, computationally efficient approach for wide field-of-view (cm2) BCS tumor margin assessment relative to pixel-based optical scatter or color properties alone.

摘要

利用纹理分析和机器学习框架对 42 个从保乳手术(BCS)新鲜切除的面包状肿瘤切除物的漫射空间频率域成像(sd-SFDI)数据进行评估,用于组织分类。切除物包含 56 个由专家组织病理学分析确定的感兴趣区域(ROI)。ROI 与 sd-SFDI 数据配准,并采样到经确认的同质组织学分类的约 4×4mm2 子图像样本中。使用灰度共生矩阵像素统计、图像基元和功率谱密度曲线参数分析 sd-SFDI 反射率纹理。纹理指标在三种良性和三种恶性组织亚型之间表现出统计学意义(p 值<0.05)。良性和恶性亚型对之间进行基于纹理的二进制分类,并进行基于相关性的特征选择。使用五重交叉验证和特征网格搜索评估分类性能。使用漫射、单色反射(照明空间频率 fx=1.37mm-1,光学波长 λ=490nm)的分类准确率范围为 0.55(95%CI:0.41 至 0.69)至 0.95(95%CI:0.90 至 1.00),具体取决于良性-恶性诊断对。sd-SFDI 数据的纹理分析保持了图像内的空间上下文,无需光传输模型假设,并且相对于单独的基于像素的光散射或颜色特性,可能为宽视场(cm2)BCS 肿瘤边界评估提供替代的、计算效率高的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1da0/6744928/b7dc237d5109/JBO-024-096003-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验