Ren Wuwei, Li Linlin, Zhang Jianru, Vaas Markus, Klohs Jan, Ripoll Jorge, Wolf Martin, Ni Ruiqing, Rudin Markus
Institute for Biomedical Engineering, ETH and University of Zurich, Zurich 8006, Switzerland.
School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China.
Biomed Opt Express. 2022 Jun 8;13(7):3809-3822. doi: 10.1364/BOE.458290. eCollection 2022 Jul 1.
Abnormal cerebral accumulation of amyloid-beta peptide (Aβ) is a major hallmark of Alzheimer's disease. Non-invasive monitoring of Aβ deposits enables assessing the disease burden in patients and animal models mimicking aspects of the human disease as well as evaluating the efficacy of Aβ-modulating therapies. Previous assessments of plaque load have been predominantly based on macroscopic fluorescence reflectance imaging (FRI) and confocal or two-photon microscopy using Aβ-specific imaging agents. However, the former method lacks depth resolution, whereas the latter is restricted by the limited field of view preventing a full coverage of the large brain region. Here, we utilized a fluorescence molecular tomography (FMT)-magnetic resonance imaging (MRI) pipeline with the curcumin derivative fluorescent probe CRANAD-2 to achieve full 3D brain coverage for detecting Aβ accumulation in the arcAβ mouse model of cerebral amyloidosis. A homebuilt FMT system was used for data acquisition, whereas a customized software platform enabled the integration of MRI-derived anatomical information as prior information for FMT image reconstruction. The results obtained from the FMT-MRI study were compared to those from conventional planar FRI recorded under similar physiological conditions, yielding comparable time courses of the fluorescence intensity following intravenous injection of CRANAD-2 in a region-of-interest comprising the brain. In conclusion, we have demonstrated the feasibility of visualizing Aβ deposition in 3D using a multimodal FMT-MRI strategy. This hybrid imaging method provides complementary anatomical, physiological and molecular information, thereby enabling the detailed characterization of the disease status in arcAβ mouse models, which can also facilitate monitoring the efficacy of putative treatments targeting Aβ.
淀粉样β肽(Aβ)在大脑中的异常蓄积是阿尔茨海默病的主要标志。对Aβ沉积物进行非侵入性监测能够评估患者和模拟人类疾病某些方面的动物模型中的疾病负担,还能评估调节Aβ疗法的疗效。以往对斑块负荷的评估主要基于宏观荧光反射成像(FRI)以及使用Aβ特异性成像剂的共聚焦或双光子显微镜检查。然而,前一种方法缺乏深度分辨率,而后一种方法则受限于有限的视野,无法完全覆盖大脑的大区域。在此,我们利用一种带有姜黄素衍生物荧光探针CRANAD-2的荧光分子断层扫描(FMT)-磁共振成像(MRI)流程,以实现对大脑的完整三维覆盖,用于检测脑淀粉样变性的arcAβ小鼠模型中的Aβ蓄积情况。使用自制的FMT系统进行数据采集,而定制的软件平台能够将MRI衍生的解剖学信息作为FMT图像重建的先验信息进行整合。将FMT-MRI研究获得的结果与在相似生理条件下记录的传统平面FRI结果进行比较,在包含大脑的感兴趣区域静脉注射CRANAD-2后,荧光强度的时间进程具有可比性。总之,我们已经证明了使用多模态FMT-MRI策略在三维空间中可视化Aβ沉积的可行性。这种混合成像方法提供了互补的解剖学、生理学和分子信息,从而能够详细表征arcAβ小鼠模型中的疾病状态,这也有助于监测针对Aβ的假定治疗方法的疗效。