J Am Chem Soc. 2019 Oct 16;141(41):16374-16381. doi: 10.1021/jacs.9b07578. Epub 2019 Sep 26.
Macrocyclization can improve bioactive peptide ligands through preorganization of molecular topology, leading to improvement of pharmacologic properties like binding affinity, cell permeability, and metabolic stability. Here we demonstrate that Diels-Alder [4 + 2] cycloadditions can be harnessed for peptide macrocyclization and stabilization within a range of peptide scaffolds and chemical environments. Diels-Alder cyclization of diverse diene-dienophile reactive pairs proceeds rapidly, in high yield and with tunable stereochemical preferences on solid-phase or in aqueous solution. This reaction can be applied alone or in concert with other stabilization chemistries, such as ring-closing olefin metathesis, to stabilize loop, turn, and α-helical secondary structural motifs. NMR and molecular dynamics studies of model loop peptides confirmed preferential formation of cycloadduct stereochemistry, imparting significant structural rigidity to the peptide backbone that resulted in augmented protease resistance and increased biological activity of a Diels-Alder cyclized (DAC) RGD peptide. Separately, we demonstrated the stabilization of DAC α-helical peptides derived from the ERα-binding protein SRC2. We solved a 2.25 Å cocrystal structure of one DAC helical peptide bound to ERα, which unequivocally corroborated stereochemistry of the resulting Diels-Alder adduct, and confirmed that the unique architecture of stabilizing motifs formed with this chemistry can directly contribute to target binding. These data establish Diels-Alder cyclization as a versatile approach to stabilize diverse protein structural motifs under a range of chemical environments.
大环化可以通过分子拓扑的预组织来改善生物活性肽配体,从而改善结合亲和力、细胞通透性和代谢稳定性等药理性质。在这里,我们证明 Diels-Alder [4 + 2] 环加成可以用于在一系列肽支架和化学环境中进行肽大环化和稳定。在固相或水溶液中,各种二烯-二烯反应对的 Diels-Alder 环加成反应迅速、高产率进行,并具有可调节的立体化学选择性。该反应可以单独使用或与其他稳定化学物质(如闭环烯烃复分解)结合使用,以稳定环、转角和α-螺旋二级结构模体。模型环肽的 NMR 和分子动力学研究证实了 环加成立体化学的优先形成,赋予肽主链显著的结构刚性,从而增强蛋白酶抗性并提高 Diels-Alder 环化 (DAC) RGD 肽的生物活性。另外,我们证明了源自 ERα 结合蛋白 SRC2 的 DAC α-螺旋肽的稳定。我们解决了一个与 ERα 结合的 DAC 螺旋肽的 2.25 Å 共晶结构,该结构明确证实了所得 Diels-Alder 加合物的立体化学,并证实了这种化学形成的稳定基序的独特结构可以直接有助于靶标结合。这些数据确立了 Diels-Alder 环化作为在各种化学环境下稳定多种蛋白质结构模体的通用方法。