Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark.
Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, UPV/EHU & Donostia International Physics Center (DIPC), PK 1072, Donostia-San Sebastian, Euskadi 20018, Spain.
J Am Chem Soc. 2024 Sep 4;146(35):24348-24357. doi: 10.1021/jacs.4c05378. Epub 2024 Aug 25.
Interactions between proteins and α-helical peptides have been the focus of drug discovery campaigns. However, the large interfaces formed between multiple turns of an α-helix and a binding protein represent a significant challenge to inhibitor discovery. Modified peptides featuring helix-stabilizing macrocycles have shown promise as inhibitors of these interactions. Here, we tested the ability of N-terminal to side-chain thioether-cyclized peptides to inhibit the α-helix binding protein Mcl-1, by screening a trillion-scale library. The enriched peptides were lariats featuring a small, four-amino-acid N-terminal macrocycle followed by a short linear sequence that resembled the natural α-helical Mcl-1 ligands. These "Heliats" (helical lariats) bound Mcl-1 with tens of nM affinity, and inhibited the interaction between Mcl-1 and a natural peptide ligand. Macrocyclization was found to stabilize α-helical structures and significantly contribute to affinity and potency. Yet, the 2nd and 3rd positions within the macrocycle were permissible to sequence variation, so that a minimal macrocyclic motif, of an -acetylated d-phenylalanine at the 1st position thioether connected to a cysteine at the 4th, could be grafted into a range of peptides and stabilize helical conformations. We found that d-stereochemistry is more helix-stabilizing than l- at the 1st position in the motif, as the d-amino acid can utilize polyproline II torsional angles that allow for more optimal intrachain hydrogen bonding. This mixed stereochemistry macrocyclic N-cap is synthetically accessible, requiring only minor modifications to standard solid-phase peptide synthesis, and its compatibility with peptide screening can provide ready access to helix-focused peptide libraries for inhibitor discovery.
蛋白质与α-螺旋肽的相互作用一直是药物发现的重点。然而,多个α-螺旋转弯与结合蛋白之间形成的大界面对抑制剂的发现构成了重大挑战。具有螺旋稳定大环的修饰肽已显示出作为这些相互作用抑制剂的潜力。在这里,我们通过筛选万亿规模的文库,测试了 N 端到侧链硫醚环化肽抑制α-螺旋结合蛋白 Mcl-1 的能力。富集中的肽是带有小的四氨基酸 N 端大环的花边,后面是短的线性序列,类似于天然的α-螺旋 Mcl-1 配体。这些“Heliat”(螺旋花边)与 Mcl-1 的结合亲和力为数十纳摩尔,并且抑制了 Mcl-1 与天然肽配体之间的相互作用。环化被发现稳定了α-螺旋结构,并显著提高了亲和力和效力。然而,大环内的第 2 和第 3 位允许序列变化,因此最小的大环基序,即第 1 位的乙酰化 d-苯丙氨酸与第 4 位的半胱氨酸硫醚连接,可以被嫁接入一系列肽中并稳定螺旋构象。我们发现,在基序中,第 1 位的 d-立体异构体比 l-更能稳定螺旋,因为 d-氨基酸可以利用允许更优化的链内氢键的多脯氨酸 II 扭转角。这种混合立体化学大环 N 帽在合成上是可及的,仅需对标准固相肽合成进行微小修改,并且其与肽筛选的兼容性可以为抑制剂发现提供易于获得的螺旋焦点肽文库。