Lindsey J C, Ryan L M
Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115.
Environ Health Perspect. 1994 Jan;102 Suppl 1(Suppl 1):9-17. doi: 10.1289/ehp.94102s19.
The three-state illness-death model provides a useful way to characterize data from a rodent tumorigenicity experiment. Most parametrizations proposed recently in the literature assume discrete time for the death process and either discrete or continuous time for the tumor onset process. We compare these approaches with a third alternative that uses a piecewise continuous model on the hazards for tumor onset and death. All three models assume proportional hazards to characterize tumor lethality and the effect of dose on tumor onset and death rate. All of the models can easily be fitted using an Expectation Maximization (EM) algorithm. The piecewise continuous model is particularly appealing in this context because the complete data likelihood corresponds to a standard piecewise exponential model with tumor presence as a time-varying covariate. It can be shown analytically that differences between the parameter estimates given by each model are explained by varying assumptions about when tumor onsets, deaths, and sacrifices occur within intervals. The mixed-time model is seen to be an extension of the grouped data proportional hazards model [Mutat. Res. 24:267-278 (1981)]. We argue that the continuous-time model is preferable to the discrete- and mixed-time models because it gives reasonable estimates with relatively few intervals while still making full use of the available information. Data from the ED01 experiment illustrate the results.
三状态疾病-死亡模型为描述啮齿动物致瘤性实验的数据提供了一种有用的方法。文献中最近提出的大多数参数化方法假设死亡过程为离散时间,肿瘤发生过程为离散或连续时间。我们将这些方法与第三种方法进行比较,该方法对肿瘤发生和死亡的风险使用分段连续模型。所有三种模型都假设风险成比例,以描述肿瘤致死率以及剂量对肿瘤发生和死亡率的影响。所有模型都可以使用期望最大化(EM)算法轻松拟合。在这种情况下,分段连续模型特别有吸引力,因为完整数据似然对应于一个标准的分段指数模型,其中肿瘤存在作为一个随时间变化的协变量。可以通过分析表明,每个模型给出的参数估计之间的差异是由关于肿瘤在区间内何时发生、死亡和处死的不同假设来解释的。混合时间模型被视为分组数据比例风险模型的扩展[《突变研究》24:267 - 278(1981)]。我们认为连续时间模型比离散时间和混合时间模型更可取,因为它用相对较少的区间就能给出合理的估计,同时仍能充分利用可用信息。ED01实验的数据说明了这些结果。