Rennó-Costa César, Tort Adriano B L
Digital Metropolis Institute, Federal University of Rio Grande do Norte, RN 59075-050, Brazil, and
Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450, Brazil.
J Neurosci. 2017 Aug 23;37(34):8062-8076. doi: 10.1523/JNEUROSCI.3490-16.2017. Epub 2017 Jul 12.
Place cells in the hippocampus and grid cells in the medial entorhinal cortex have different codes for space. However, how one code relates to the other is ill understood. Based on the anatomy of the entorhinal-hippocampal circuitry, we constructed a model of place and grid cells organized in a loop to investigate their mutual influence in the establishment of their codes for space. Using computer simulations, we first replicated experiments in rats that measured place and grid cell activity in different environments, and then assessed which features of the model account for different phenomena observed in neurophysiological data, such as pattern completion and pattern separation, global and rate remapping of place cells, and realignment of grid cells. We found that (1) the interaction between grid and place cells converges quickly; (2) the spatial code of place cells does not require, but is altered by, grid cell input; (3) plasticity in sensory inputs to place cells is key for pattern completion but not pattern separation; (4) grid realignment can be explained in terms of place cell remapping as opposed to the other way around; (5) the switch between global and rate remapping is self-organized; and (6) grid cell input to place cells helps stabilize their code under noisy and/or inconsistent sensory input. We conclude that the hippocampus-entorhinal circuit uses the mutual interaction of place and grid cells to encode the surrounding environment and propose a theory on how such interdependence underlies the formation and use of the cognitive map. The mammalian brain implements a positional system with two key pieces: place and grid cells. To gain insight into the dynamics of place and grid cell interaction, we built a computational model with the two cell types organized in a loop. The proposed model accounts for differences in how place and grid cells represent different environments and provides a new interpretation in which place and grid cells mutually interact to form a coupled code for space.
海马体中的位置细胞和内嗅皮质中的网格细胞对空间具有不同的编码方式。然而,一种编码与另一种编码之间的关系却鲜为人知。基于内嗅 - 海马神经回路的解剖结构,我们构建了一个以环路形式组织的位置细胞和网格细胞模型,以研究它们在空间编码建立过程中的相互影响。通过计算机模拟,我们首先复制了在大鼠身上进行的实验,这些实验测量了不同环境中位置细胞和网格细胞的活动,然后评估模型的哪些特征可以解释神经生理学数据中观察到的不同现象,如模式完成和模式分离、位置细胞的全局和速率重映射以及网格细胞的重新排列。我们发现:(1)网格细胞和位置细胞之间的相互作用迅速收敛;(2)位置细胞的空间编码不需要网格细胞输入,但会因网格细胞输入而改变;(3)位置细胞感觉输入的可塑性是模式完成的关键,但不是模式分离的关键;(4)网格重新排列可以用位置细胞重映射来解释,而不是相反;(5)全局和速率重映射之间的切换是自组织的;(6)网格细胞对位置细胞的输入有助于在嘈杂和/或不一致的感觉输入下稳定其编码。我们得出结论,海马 - 内嗅回路利用位置细胞和网格细胞的相互作用来编码周围环境,并提出了一种理论,说明这种相互依赖如何构成认知地图的形成和使用基础。哺乳动物大脑通过两个关键部分实现了一个定位系统:位置细胞和网格细胞。为了深入了解位置细胞和网格细胞相互作用的动态过程,我们构建了一个计算模型,其中这两种细胞类型以环路形式组织。所提出的模型解释了位置细胞和网格细胞如何表征不同环境的差异,并提供了一种新的解释,即位置细胞和网格细胞相互作用形成空间耦合编码。