Suppr超能文献

利用生物传感器辅助微生物共培养工程从葡萄糖中从头合成苯酚。

De novo phenol bioproduction from glucose using biosensor-assisted microbial coculture engineering.

机构信息

Department of Chemical and Biochemical Engineering, Xiamen University, Siming South Road, Xiamen, Fujian, China.

Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey.

出版信息

Biotechnol Bioeng. 2019 Dec;116(12):3349-3359. doi: 10.1002/bit.27168. Epub 2019 Sep 30.

Abstract

Microbial biosynthesis has been extensively adapted for the production of commodity chemicals using renewable feedstocks. This study integrated metabolite biosensors into rationally designed microbial cocultures to achieve high-efficiency bioproduction of phenol from simple carbon substrate glucose. Specifically, two sets of E. coli-E. coli cocultures were first constructed for accommodation of two independent phenol biosynthesis pathways via 4-hydroxybenzoate (4HB) and tyrosine (TYR), respectively. Biosensor-assisted microbial cell selection mechanisms were subsequently incorporated into the coculture systems to address the insufficient pathway intermediate provision that limited the overall bioproduction. For the 4HB- and TYR-dependent pathways, this approach improved the phenol production by 2.3- and 3.9-fold, respectively, compared to the monoculture controls. Notably, the use of biosensor-assisted cell selection strategy in monocultures resulted in reduced phenol production, highlighting the advantage of coculture engineering for coupling with biosensing. After stepwise optimization, the phenol bioproduction yield of the engineered coculture's reached 0.057 g/g glucose. Furthermore, the coculture biosynthesis was successfully scaled up at both shake flask and bioreactor levels. Overall, the findings of this study demonstrate the outstanding potential of coupling biosensing and modular coculture engineering for advancing microbial biosynthesis of valuable molecules from renewable carbon substrates.

摘要

微生物生物合成已经广泛适应使用可再生原料生产商品化学品。本研究通过将代谢物生物传感器集成到合理设计的微生物共培养物中,实现了从简单碳基质葡萄糖高效生物合成苯酚。具体来说,首先构建了两组大肠杆菌-大肠杆菌共培养物,分别通过 4-羟基苯甲酸(4HB)和酪氨酸(TYR)来容纳两个独立的苯酚生物合成途径。随后,将生物传感器辅助的微生物细胞选择机制纳入共培养系统,以解决限制整体生物生产的途径中间产物供应不足的问题。对于 4HB 和 TYR 依赖途径,与单培养对照相比,该方法分别将苯酚产量提高了 2.3 倍和 3.9 倍。值得注意的是,在单培养物中使用生物传感器辅助的细胞选择策略会导致苯酚产量降低,这突出了共培养工程与生物传感偶联的优势。经过逐步优化,工程化共培养物的苯酚生物产量达到了 0.057 g/g 葡萄糖。此外,共培养物生物合成在摇瓶和生物反应器水平上都成功放大。总的来说,本研究的结果表明,将生物传感与模块化共培养工程偶联对于从可再生碳基质推进有价值分子的微生物生物合成具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验