Suppr超能文献

一种自适应项目标定的影子测试方法。

A Shadow-Test Approach to Adaptive Item Calibration.

机构信息

University of Twente, Enschede, The Netherlands.

ACT, Inc., Iowa City, IA, USA.

出版信息

Psychometrika. 2020 Jun;85(2):301-321. doi: 10.1007/s11336-020-09703-8. Epub 2020 Jun 17.

Abstract

A shadow-test approach to the calibration of field-test items embedded in adaptive testing is presented. The objective function used in the shadow-test model selects both the operational and field-test items adaptively using a Bayesian version of the criterion of [Formula: see text]-optimality. The constraint set for the model can be used to hide the field-test items completely in the content of the test as well as to deal with such practical issues as random control of their exposure rates. The approach runs on efficient implementations of the Gibbs sampler for the real-time updating of the ability and field-test parameters. Optimal settings for the proposed algorithms were found and used to demonstrate item calibration with smaller than traditional sample sizes in runtimes fully comparable with conventional adaptive testing.

摘要

提出了一种在自适应测试中对嵌入的现场测试项目进行标定的阴影测试方法。在阴影测试模型中使用的目标函数使用贝叶斯版本的[公式:见文本]最优性准则自适应地选择操作和现场测试项目。该模型的约束集可用于完全将现场测试项目隐藏在测试内容中,以及处理其曝光率的随机控制等实际问题。该方法在实时更新能力和现场测试参数的 Gibbs 采样器的有效实现上运行。找到了所提出算法的最优设置,并使用它们来展示在运行时间与传统自适应测试完全可比的情况下,使用小于传统样本大小的项目标定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/130e/7385007/9e77a4d4b3a9/11336_2020_9703_Fig9_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验