Cheng Ying, Yuan Ke-Hai
University of Notre Dame.
Psychometrika. 2010 Jun;75(2):280-291. doi: 10.1007/s11336-009-9144-x.
In this paper we propose an upward correction to the standard error (SE) estimation of θ̂(ML), the maximum likelihood (ML) estimate of the latent trait in item response theory (IRT). More specifically, the upward correction is provided for the SE of θ̂(ML) when item parameter estimates obtained from an independent pretest sample are used in IRT scoring. When item parameter estimates are employed, the resulting latent trait estimate is called pseudo maximum likelihood (PML) estimate. Traditionally the SE of θ̂(ML) is obtained on the basis of test information only, as if the item parameters are known. The upward correction takes into account the error that is carried over from the estimation of item parameters, in addition to the error in latent trait recovery itself. Our simulation study shows that both types of SE estimates are very good when θ is in the middle range of the latent trait distribution, but the upward-corrected SEs are more accurate than the traditional ones when θ takes more extreme values.
在本文中,我们提出对项目反应理论(IRT)中潜在特质的最大似然(ML)估计值θ̂(ML)的标准误差(SE)估计进行向上修正。更具体地说,当从独立预测试样本中获得的项目参数估计用于IRT评分时,对θ̂(ML)的SE进行向上修正。当采用项目参数估计时,得到的潜在特质估计值称为伪最大似然(PML)估计值。传统上,θ̂(ML)的SE仅基于测试信息获得,就好像项目参数是已知的一样。向上修正除了考虑潜在特质恢复本身的误差外,还考虑了从项目参数估计中传递过来的误差。我们的模拟研究表明,当θ处于潜在特质分布的中间范围时,两种类型的SE估计都非常好,但当θ取更极端的值时,向上修正的SE比传统的SE更准确。