Suppr超能文献

有误差的项目参数估计对潜在特质恢复的影响。

THE IMPACT OF FALLIBLE ITEM PARAMETER ESTIMATES ON LATENT TRAIT RECOVERY.

作者信息

Cheng Ying, Yuan Ke-Hai

机构信息

University of Notre Dame.

出版信息

Psychometrika. 2010 Jun;75(2):280-291. doi: 10.1007/s11336-009-9144-x.

Abstract

In this paper we propose an upward correction to the standard error (SE) estimation of θ̂(ML), the maximum likelihood (ML) estimate of the latent trait in item response theory (IRT). More specifically, the upward correction is provided for the SE of θ̂(ML) when item parameter estimates obtained from an independent pretest sample are used in IRT scoring. When item parameter estimates are employed, the resulting latent trait estimate is called pseudo maximum likelihood (PML) estimate. Traditionally the SE of θ̂(ML) is obtained on the basis of test information only, as if the item parameters are known. The upward correction takes into account the error that is carried over from the estimation of item parameters, in addition to the error in latent trait recovery itself. Our simulation study shows that both types of SE estimates are very good when θ is in the middle range of the latent trait distribution, but the upward-corrected SEs are more accurate than the traditional ones when θ takes more extreme values.

摘要

在本文中,我们提出对项目反应理论(IRT)中潜在特质的最大似然(ML)估计值θ̂(ML)的标准误差(SE)估计进行向上修正。更具体地说,当从独立预测试样本中获得的项目参数估计用于IRT评分时,对θ̂(ML)的SE进行向上修正。当采用项目参数估计时,得到的潜在特质估计值称为伪最大似然(PML)估计值。传统上,θ̂(ML)的SE仅基于测试信息获得,就好像项目参数是已知的一样。向上修正除了考虑潜在特质恢复本身的误差外,还考虑了从项目参数估计中传递过来的误差。我们的模拟研究表明,当θ处于潜在特质分布的中间范围时,两种类型的SE估计都非常好,但当θ取更极端的值时,向上修正的SE比传统的SE更准确。

相似文献

1
THE IMPACT OF FALLIBLE ITEM PARAMETER ESTIMATES ON LATENT TRAIT RECOVERY.
Psychometrika. 2010 Jun;75(2):280-291. doi: 10.1007/s11336-009-9144-x.
2
Rasch Model Parameter Estimation in the Presence of a Nonnormal Latent Trait Using a Nonparametric Bayesian Approach.
Educ Psychol Meas. 2016 Aug;76(4):662-684. doi: 10.1177/0013164415608418. Epub 2015 Oct 12.
3
Sources of Error in IRT Trait Estimation.
Appl Psychol Meas. 2018 Jul;42(5):359-375. doi: 10.1177/0146621617733955. Epub 2017 Oct 6.
4
Latent -Scoring Modeling: Estimation of Item and Person Parameters.
Educ Psychol Meas. 2021 Apr;81(2):388-404. doi: 10.1177/0013164420941147. Epub 2020 Jul 13.
5
Parameter Recovery in Multidimensional Item Response Theory Models Under Complexity and Nonnormality.
Appl Psychol Meas. 2017 Oct;41(7):530-544. doi: 10.1177/0146621617707507. Epub 2017 May 11.
6
The Impact of Sample Size and Various Other Factors on Estimation of Dichotomous Mixture IRT Models.
Educ Psychol Meas. 2023 Jun;83(3):520-555. doi: 10.1177/00131644221094325. Epub 2022 May 19.
7
Mixture IRT Model With a Higher-Order Structure for Latent Traits.
Educ Psychol Meas. 2017 Apr;77(2):275-304. doi: 10.1177/0013164416640327. Epub 2016 Apr 1.
9
Robustness of Parameter Estimation to Assumptions of Normality in the Multidimensional Graded Response Model.
Multivariate Behav Res. 2018 May-Jun;53(3):403-418. doi: 10.1080/00273171.2018.1455572. Epub 2018 Apr 6.
10
On Latent Trait Estimation in Multidimensional Compensatory Item Response Models.
Psychometrika. 2015 Jun;80(2):428-49. doi: 10.1007/s11336-013-9399-0. Epub 2014 Mar 7.

引用本文的文献

1
Efficient Corrections for Standardized Person-Fit Statistics.
Psychometrika. 2024 Jun;89(2):569-591. doi: 10.1007/s11336-024-09960-x. Epub 2024 Apr 1.
2
Characterizing Sampling Variability for Item Response Theory Scale Scores in a Fixed-Parameter Calibrated Projection Design.
Appl Psychol Meas. 2022 Sep;46(6):509-528. doi: 10.1177/01466216221108136. Epub 2022 Jun 20.
3
Robustness of Adaptive Measurement of Change to Item Parameter Estimation Error.
Educ Psychol Meas. 2022 Aug;82(4):643-677. doi: 10.1177/00131644211033902. Epub 2021 Aug 16.
4
Asymptotically Corrected Person Fit Statistics for Multidimensional Constructs with Simple Structure and Mixed Item Types.
Psychometrika. 2021 Jun;86(2):464-488. doi: 10.1007/s11336-021-09756-3. Epub 2021 Apr 1.
5
New Efficient and Practicable Adaptive Designs for Calibrating Items Online.
Appl Psychol Meas. 2020 Jan;44(1):3-16. doi: 10.1177/0146621618824854. Epub 2019 Jan 30.
6
Optimal Online Calibration Designs for Item Replenishment in Adaptive Testing.
Psychometrika. 2020 Mar;85(1):35-55. doi: 10.1007/s11336-019-09687-0. Epub 2019 Sep 17.
7
Second-Order Probability Matching Priors for the Person Parameter in Unidimensional IRT Models.
Psychometrika. 2019 Sep;84(3):701-718. doi: 10.1007/s11336-019-09675-4. Epub 2019 Jul 1.
8
Restricted Recalibration of Item Response Theory Models.
Psychometrika. 2019 Jun;84(2):529-553. doi: 10.1007/s11336-019-09667-4. Epub 2019 Mar 20.
9
Sources of Error in IRT Trait Estimation.
Appl Psychol Meas. 2018 Jul;42(5):359-375. doi: 10.1177/0146621617733955. Epub 2017 Oct 6.
10
Bootstrap-Calibrated Interval Estimates for Latent Variable Scores in Item Response Theory.
Psychometrika. 2018 Jun;83(2):333-354. doi: 10.1007/s11336-017-9582-9. Epub 2017 Sep 6.

本文引用的文献

1
SEM of another flavour: two new applications of the supplemented EM algorithm.
Br J Math Stat Psychol. 2008 Nov;61(Pt 2):309-29. doi: 10.1348/000711007X249603. Epub 2007 Oct 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验