Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, United States.
Biozentrum, University of Basel, Swiss Institute for Bioinformatics, Basel, Switzerland.
Elife. 2019 Sep 18;8:e44205. doi: 10.7554/eLife.44205.
Rapidly evolving pathogens like influenza viruses can persist by changing their antigenic properties fast enough to evade the adaptive immunity, yet they rarely split into diverging lineages. By mapping the multi-strain Susceptible-Infected-Recovered model onto the traveling wave model of adapting populations, we demonstrate that persistence of a rapidly evolving, Red-Queen-like state of the pathogen population requires long-ranged cross-immunity and sufficiently large population sizes. This state is unstable and the population goes extinct or 'speciates' into two pathogen strains with antigenic divergence beyond the range of cross-inhibition. However, in a certain range of evolutionary parameters, a single cross-inhibiting population can exist for times long compared to the time to the most recent common ancestor ([Formula: see text]) and gives rise to phylogenetic patterns typical of influenza virus. We demonstrate that the rate of speciation is related to fluctuations of [Formula: see text] and construct a 'phase diagram' identifying different phylodynamic regimes as a function of evolutionary parameters.
快速进化的病原体(如流感病毒)可以通过足够快地改变其抗原特性来逃避适应性免疫而持续存在,但它们很少分裂成不同的谱系。通过将多株易感-感染-恢复模型映射到适应种群的传播波模型上,我们证明了快速进化的、类似于红皇后状态的病原体种群的持续存在需要长程交叉免疫和足够大的种群大小。这种状态是不稳定的,种群要么灭绝,要么“物种形成”为两种具有抗原差异的病原体株,其交叉抑制范围超出了抗原差异。然而,在一定的进化参数范围内,一个单一的交叉抑制种群可以存在的时间远远长于最近共同祖先的时间([公式:见文本]),并产生与流感病毒典型的系统发育模式。我们证明了物种形成的速度与[公式:见文本]的波动有关,并构建了一个“相图”,将不同的系统发育动力学状态作为进化参数的函数来识别。