Suppr超能文献

参数化面部绘图:一个人口统计学上多样化且可定制的面部空间模型。

Parametric face drawings: A demographically diverse and customizable face space model.

作者信息

Day Jennifer, Davidenko Nicolas

机构信息

Department of Psychology, University of California, Santa Cruz, CA, USA.

出版信息

J Vis. 2019 Sep 3;19(11):7. doi: 10.1167/19.11.7.

Abstract

We introduce a novel face space model-parametric face drawings (or PFDs)-to generate schematic, though realistic, parameterized line drawings of faces based on the statistical distribution of human facial features. A review of existing face space models (including FaceGen Modeller, Synthetic Faces, MPI, and active appearance model) indicates that current models are constrained by their reliance on ethnically homogeneous face databases. This constraint has led to negative consequences for underrepresented populations, such as impairments in automatized identity recognition of certain demographic groups. Our model is based on a demographically diverse sample of 400 faces (200 female, 200 male; 100 East Asian/Pacific Islander, 100 Latinx/Hispanic, 100 black/African-American, and 100 white/Caucasian) compiled from several face databases (including FERET face recognition technology and the Chicago Face Database). Each front-view face image is manually coded with 85 landmark points that are then normalized and rendered with MATLAB (MathWorks, Natick, MA) tools to produce a smooth, parameterized face line drawing. We present data from two behavioral experiments to validate our model and demonstrate its applicability. In Experiment 1 we show that PFDs produce a reliable "inversion effect" in short-term recognition, a hallmark of holistic processing. In Experiment 2, we conduct a celebrity recognition task, comparing performance on PFDs to performance on untextured renderings from FaceGen Modeller. Participants successfully recognized approximately 50% of celebrity faces based on the PFD models, comparable to performance based on FaceGen Modeler (also 50% correct). We highlight a range of potential applications of our model, list some limitations, and provide MATLAB resources for researchers to utilize our face space, including the ability to customize the demographic makeup of the face space, add new faces, and produce morphs and caricatures.

摘要

我们引入了一种新颖的面部空间模型——参数化面部绘图(或PFD),以基于人类面部特征的统计分布生成面部的示意性但逼真的参数化线条图。对现有面部空间模型(包括FaceGen Modeller、Synthetic Faces、MPI和主动外观模型)的综述表明,当前模型受到依赖种族同质化面部数据库的限制。这种限制对代表性不足的人群产生了负面影响,比如某些人口群体在自动身份识别方面存在障碍。我们的模型基于从多个面部数据库(包括FERET面部识别技术和芝加哥面部数据库)汇编的400张面部的人口统计学多样化样本(200名女性、200名男性;100名东亚/太平洋岛民、100名拉丁裔/西班牙裔、100名黑人/非裔美国人以及100名白人/高加索人)。每张正视图面部图像都手动标注了85个地标点,然后使用MATLAB(MathWorks,马萨诸塞州纳蒂克)工具进行归一化处理并渲染,以生成平滑的参数化面部线条图。我们展示了两项行为实验的数据来验证我们的模型并证明其适用性。在实验1中,我们表明PFD在短期识别中产生了可靠的“倒置效应”,这是整体加工的一个标志。在实验2中,我们进行了名人识别任务,将基于PFD的表现与基于FaceGen Modeller的无纹理渲染的表现进行比较。参与者基于PFD模型成功识别了大约50%的名人面孔,这与基于FaceGen Modeler的表现相当(正确率也是50%)。我们强调了我们模型的一系列潜在应用,列出了一些局限性,并为研究人员提供MATLAB资源以利用我们的面部空间,包括自定义面部空间的人口构成、添加新面孔以及生成变形和漫画的能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验