Suppr超能文献

基于同源拓扑特征的面部建模与测量。

Facial modeling and measurement based upon homologous topographical features.

机构信息

Department of Anthropology, University of Oregon, Eugene, Oregon, United States of America.

Department of Computer and Information Science, University of Oregon, Eugene, Oregon, United States of America.

出版信息

PLoS One. 2024 May 31;19(5):e0304561. doi: 10.1371/journal.pone.0304561. eCollection 2024.

Abstract

Measurement of human faces is fundamental to many applications from recognition to genetic phenotyping. While anthropometric landmarks provide a conventional set of homologous measurement points, digital scans are increasingly used for facial measurement, despite the difficulties in establishing their homology. We introduce an alternative basis for facial measurement, which 1) provides a richer information density than discrete point measurements, 2) derives its homology from shared facial topography (ridges, folds, etc.), and 3) quantifies local morphological variation following the conventions and practices of anatomical description. A parametric model that permits matching a broad range of facial variation by the adjustment of 71 parameters is demonstrated by modeling a sample of 80 adult human faces. The surface of the parametric model can be adjusted to match each photogrammetric surface mesh generally to within 1 mm, demonstrating a novel and efficient means for facial shape encoding. We examine how well this scheme quantifies facial shape and variation with respect to geographic ancestry and sex. We compare this analysis with a more conventional, landmark-based geometric morphometric (GMM) study with 43 landmarks placed on the same set of scans. Our multivariate statistical analysis using the 71 attribute values separates geographic ancestry groups and sexes with a high degree of reliability, and these results are broadly similar to those from GMM, but with some key differences that we discuss. This approach is compared with conventional, non-parametric methods for the quantification of facial shape, including generality, information density, and the separation of size and shape. Potential uses for phenotypic and dysmorphology studies are also discussed.

摘要

人脸测量在识别到遗传表型等许多应用中都至关重要。虽然人体测量标志提供了一组传统的同源测量点,但数字扫描越来越多地用于面部测量,尽管在确定其同源性方面存在困难。我们引入了一种替代的面部测量基础,该基础 1)提供比离散点测量更丰富的信息密度,2)从共享的面部拓扑结构(脊、褶皱等)中得出其同源性,3)根据解剖学描述的惯例和实践量化局部形态变化。通过对 80 个成人面部样本进行建模,展示了一种允许通过调整 71 个参数来匹配广泛的面部变化的参数模型。参数模型的表面可以调整以匹配每个摄影测量表面网格,通常在 1 毫米以内,这证明了一种新颖而有效的面部形状编码方法。我们研究了这种方案如何根据地理起源和性别量化面部形状和变化。我们将这种分析与更传统的基于地标几何形态测量(GMM)研究进行了比较,该研究在同一组扫描上放置了 43 个地标。我们使用 71 个属性值进行的多元统计分析高度可靠地分离了地理起源群体和性别,这些结果与 GMM 的结果大致相似,但存在一些我们将讨论的关键差异。这种方法与用于量化面部形状的传统非参数方法进行了比较,包括通用性、信息密度以及大小和形状的分离。还讨论了表型和发育畸形研究的潜在用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa9a/11142440/a888d0d664c0/pone.0304561.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验