Institute of Biotechnology, Vilnius University, Vilnius 10257, Lithuania.
Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig 04103, Germany.
Cell Rep. 2019 Sep 17;28(12):3157-3166.e4. doi: 10.1016/j.celrep.2019.08.033.
The multi-subunit type I CRISPR-Cas surveillance complex Cascade uses its crRNA to recognize dsDNA targets. Recognition involves DNA unwinding and base-pairing between the crRNA spacer region and a complementary DNA strand, resulting in formation of an R-loop structure. The modular Cascade architecture allows assembly of complexes containing crRNAs with altered spacer lengths that promise increased target specificity in emerging biotechnological applications. Here we produce type I-E Cascade complexes containing crRNAs with up to 57-nt-long spacers. We show that these complexes form R-loops corresponding to the designed target length, even for the longest spacers tested. Furthermore, the complexes can bind their targets with much higher affinity compared with the wild-type form. However, target recognition and the subsequent Cas3-mediated DNA cleavage do not require extended R-loops but already occur for wild-type-sized R-loops. These findings set important limits for specificity improvements of type I CRISPR-Cas systems.
I 型多亚基 CRISPR-Cas 监视复合物 Cascade 使用其 crRNA 识别 dsDNA 靶标。识别涉及 DNA 解旋和 crRNA 间隔区与互补 DNA 链之间的碱基配对,导致 R 环结构的形成。模块化的 Cascade 结构允许组装含有改变的间隔长度的 crRNA 的复合物,这有望在新兴的生物技术应用中提高目标特异性。在这里,我们产生了含有长达 57 个核苷酸的间隔区的 I-E 型 Cascade 复合物。我们表明,这些复合物形成与设计靶标长度相对应的 R 环,即使对于测试的最长间隔区也是如此。此外,与野生型相比,这些复合物可以与其靶标以更高的亲和力结合。然而,靶标识别和随后的 Cas3 介导的 DNA 切割不需要扩展的 R 环,而是已经发生在野生型大小的 R 环上。这些发现为 I 型 CRISPR-Cas 系统的特异性改进设定了重要的限制。