Suppr超能文献

采用 PEG 交联剂优化凝胶相生物墨水的细胞活力,并调整打印后机械性能。

Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties.

机构信息

Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.

Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA; Department of Obstetrics & Gynecology, Northwestern University, Chicago, IL 60611, USA.

出版信息

Acta Biomater. 2019 Nov;99:121-132. doi: 10.1016/j.actbio.2019.09.007. Epub 2019 Sep 17.

Abstract

The field of 3D bioprinting has rapidly grown, yet the fundamental ability to manipulate material properties has been challenging with current bioink methods. Here, we change bioink properties using our PEG cross-linking (PEGX) bioink method with the objective of optimizing cell viability while retaining control of mechanical properties of the final bioprinted construct. First, we investigate cytocompatible, covalent cross-linking chemistries for bioink synthesis (e.g. Thiol Michael type addition and bioorthogonal inverse electron demand Diels-Alder reaction). We demonstrate these reactions are compatible with the bioink method, which results in high cell viability. The PEGX method is then exploited to optimize extruded cell viability by manipulating bioink gel robustness, characterized by mass flow rate. Below a critical point, cell viability linearly decreases with decreasing flow rates, but above this point, high viability is achieved. This work underscores the importance of building a foundational understanding of the relationships between extrudable bioink properties and cell health post-printing to more efficiently tune material properties for a variety of tissue and organ engineering applications. Finally, we also develop a post-printing, cell-friendly cross-linking strategy utilizing the same reactions used for synthesis. This secondary cross-linking leads to a range of mechanical properties relevant to soft tissue engineering as well as highly viable cell-laden gels stable for over one month in culture. STATEMENT OF SIGNIFICANCE: We demonstrate that a PEG crosslinking bioink method can be used with various cytocompatible, covalent cross-linking reactions: Thiol Michael type addition and tetrazine-norbornene click. The ability to vary bioink chemistry expands candidate polymers, and therefore can expedite development of new bioinks from unique polymers. We confirm post-printed cell viability and are the first to probe, in covalently cross-linked inks, how cell viability is impacted by different flow properties (mass flow rate). Finally, we also present PEG cross-linking as a new method of post-printing cross-linking that improves mechanical properties and stability while maintaining cell viability. By varying the cross-linking reaction, this method can be applicable to many types of polymers/inks for easy adoption by others investigating bioinks and hydrogels.

摘要

3D 生物打印领域发展迅速,但目前的生物墨水方法在操控材料性能方面仍具有挑战性。在这里,我们使用 PEG 交联(PEGX)生物墨水方法改变生物墨水的性质,目的是在保留最终生物打印构建体的机械性能控制的同时优化细胞活力。首先,我们研究了用于生物墨水合成的细胞相容性、共价交联化学(例如硫醇迈克尔加成和生物正交逆电子需求 Diels-Alder 反应)。我们证明这些反应与生物墨水方法兼容,从而获得高细胞活力。然后,通过操纵生物墨水凝胶的坚固性(以质量流速率为特征)来优化挤出细胞活力,从而利用 PEGX 方法。在临界点以下,细胞活力随流速的降低而呈线性下降,但在此临界点以上,可实现高活力。这项工作强调了建立对可挤出生物墨水性质与打印后细胞健康之间关系的基本理解的重要性,以便更有效地调整各种组织和器官工程应用的材料性质。最后,我们还开发了一种后打印、细胞友好的交联策略,利用用于合成的相同反应。这种二次交联导致一系列与软组织工程相关的机械性能,以及高度可行的细胞负载凝胶,在培养中稳定一个月以上。

意义声明

我们证明 PEG 交联生物墨水方法可与各种细胞相容的共价交联反应一起使用:硫醇迈克尔加成和四嗪-降冰片烯点击。改变生物墨水化学性质可以扩展候选聚合物的范围,因此可以加快从独特聚合物开发新生物墨水的速度。我们确认了打印后细胞活力,并且是第一个在共价交联墨水中探测到不同流动性质(质量流速率)如何影响细胞活力的。最后,我们还提出了 PEG 交联作为一种新的后打印交联方法,该方法可以改善机械性能和稳定性,同时保持细胞活力。通过改变交联反应,该方法可以适用于许多类型的聚合物/墨水,便于其他研究生物墨水和水凝胶的人员采用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验