Suppr超能文献

深度学习在印刷工业 4.0 中的工业计算机视觉质量控制中的应用。

Deep Learning for Industrial Computer Vision Quality Control in the Printing Industry 4.0.

机构信息

Hochschule Heilbronn, Fakultät Management und Vertrieb, Campus Schwäbisch Hall, 74523 Schwäbisch Hall, Germany.

Departament of Artificial, Escuela Técnica Superior de Ingenieros Informáticos, Intelligence Universidad Politécnica de Madrid, 28660 Madrid, Spain.

出版信息

Sensors (Basel). 2019 Sep 15;19(18):3987. doi: 10.3390/s19183987.

Abstract

Rapid and accurate industrial inspection to ensure the highest quality standards at a competitive price is one of the biggest challenges in the manufacturing industry. This paper shows an application of how a Deep Learning soft sensor application can be combined with a high-resolution optical quality control camera to increase the accuracy and reduce the cost of an industrial visual inspection process in the Printing Industry 4.0. During the process of producing gravure cylinders, mistakes like holes in the printing cylinder are inevitable. In order to improve the defect detection performance and reduce quality inspection costs by process automation, this paper proposes a deep neural network (DNN) soft sensor that compares the scanned surface to the used engraving file and performs an automatic quality control process by learning features through exposure to training data. The DNN sensor developed achieved a fully . Further research aims to use these results to three ends. Firstly, to predict the amount of errors a cylinder has, to further support the human operation by showing the error probability to the operator, and finally to decide autonomously about product quality without human involvement.

摘要

快速准确的工业检测,以确保具有竞争力的价格的最高质量标准,是制造业面临的最大挑战之一。本文展示了如何将深度学习软传感器应用与高分辨率光学质量控制相机相结合,以提高印刷工业 4.0 中工业视觉检测过程的准确性并降低成本。在生产凹版滚筒的过程中,像印刷滚筒上有孔这样的错误是不可避免的。为了通过过程自动化提高缺陷检测性能和降低质量检查成本,本文提出了一种深度神经网络 (DNN) 软传感器,该传感器将扫描表面与使用的雕刻文件进行比较,并通过对训练数据的学习特征来执行自动质量控制过程。所开发的 DNN 传感器实现了完全自动化。进一步的研究旨在将这些结果用于三个方面。首先,预测气缸的错误量,通过向操作员显示错误概率来进一步支持人工操作,最后在没有人工干预的情况下自主决定产品质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b3b/6767246/00314931d03a/sensors-19-03987-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验