Khan Shakir, Siddiqui Tamanna, Mourade Azrour, Alabduallah Bayan Ibrahimm, Alajlan Saad Abdullah, Almjally Abrar, Albahlal Bader M, Alfaifi Amani
College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia.
Department of Computer Science and Engineering, University Centre for Research and Development, Chandigarh University, Mohali, 140413 India.
Int J Adv Manuf Technol. 2023 Jun 6:1-13. doi: 10.1007/s00170-023-11602-y.
Soft sensors are data-driven devices that allow for estimates of quantities that are either impossible to measure or prohibitively expensive to do so. DL (deep learning) is a relatively new feature representation method for data with complex structures that has a lot of promise for soft sensing of industrial processes. One of the most important aspects of building accurate soft sensors is feature representation. This research proposed novel technique in automation of manufacturing industry where dynamic soft sensors are used in feature representation and classification of the data. Here the input will be data collected from virtual sensors and their automation-based historical data. This data has been pre-processed to recognize the missing value and usual problems like hardware failures, communication errors, incorrect readings, and process working conditions. After this process, feature representation has been done using fuzzy logic-based stacked data-driven auto-encoder (FL_SDDAE). Using the fuzzy rules, the features of input data have been identified with general automation problems. Then, for this represented features, classification process has been carried out using least square error backpropagation neural network (LSEBPNN) in which the mean square error while classification will be minimized with loss function of the data. The experimental results have been carried out for various datasets in automation of manufacturing industry in terms of computational time of 34%, QoS of 64%, RMSE of 41%, MAE of 35%, prediction performance of 94%, and measurement accuracy of 85% by proposed technique.
软传感器是数据驱动型设备,可用于估计那些要么无法测量,要么测量成本过高的量。深度学习(DL)是一种相对较新的针对具有复杂结构的数据的特征表示方法,在工业过程的软传感方面很有前景。构建精确软传感器的最重要方面之一是特征表示。本研究提出了制造业自动化中的新技术,其中动态软传感器用于数据的特征表示和分类。这里的输入将是从虚拟传感器收集的数据及其基于自动化的历史数据。此数据已进行预处理,以识别缺失值以及诸如硬件故障、通信错误、读数不正确和过程工作条件等常见问题。在此过程之后,使用基于模糊逻辑的堆叠数据驱动自动编码器(FL_SDDAE)进行特征表示。利用模糊规则,已将输入数据的特征与一般自动化问题进行了识别。然后,对于这种表示的特征,使用最小二乘误差反向传播神经网络(LSEBPNN)进行分类过程,其中分类时的均方误差将通过数据的损失函数最小化。所提出的技术针对制造业自动化中的各种数据集进行了实验,在计算时间方面达到了34%,服务质量(QoS)方面达到了64%,均方根误差(RMSE)方面达到了41%,平均绝对误差(MAE)方面达到了35%,预测性能方面达到了94%,测量精度方面达到了85%。