Suppr超能文献

自闭症相关基因 PTCHD1-AS 缺失导致的人类神经元突触功能障碍。

Synaptic Dysfunction in Human Neurons With Autism-Associated Deletions in PTCHD1-AS.

机构信息

Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.

Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada.

出版信息

Biol Psychiatry. 2020 Jan 15;87(2):139-149. doi: 10.1016/j.biopsych.2019.07.014. Epub 2019 Jul 29.

Abstract

BACKGROUND

The Xp22.11 locus that encompasses PTCHD1, DDX53, and the long noncoding RNA PTCHD1-AS is frequently disrupted in male subjects with autism spectrum disorder (ASD), but the functional consequences of these genetic risk factors for ASD are unknown.

METHODS

To evaluate the functional consequences of PTCHD1 locus deletions, we generated induced pluripotent stem cells (iPSCs) from unaffected control subjects and 3 subjects with ASD with microdeletions affecting PTCHD1-AS/PTCHD1, PTCHD1-AS/DDX53, or PTCHD1-AS alone. Function of iPSC-derived cortical neurons was assessed using molecular approaches and electrophysiology. We also compiled novel and known genetic variants of the PTCHD1 locus to explore the roles of PTCHD1 and PTCHD1-AS in genetic risk for ASD and other neurodevelopmental disorders. Finally, genome editing was used to explore the functional consequences of deleting a single conserved exon of PTCHD1-AS.

RESULTS

iPSC-derived neurons from subjects with ASD exhibited reduced miniature excitatory postsynaptic current frequency and N-methyl-D-aspartate receptor hypofunction. We found that 35 ASD-associated deletions mapping to the PTCHD1 locus disrupted exons of PTCHD1-AS. We also found a novel ASD-associated deletion of PTCHD1-AS exon 3 and showed that exon 3 loss altered PTCHD1-AS splicing without affecting expression of the neighboring PTCHD1 coding gene. Finally, targeted disruption of PTCHD1-AS exon 3 recapitulated diminished miniature excitatory postsynaptic current frequency, supporting a role for the long noncoding RNA in the etiology of ASD.

CONCLUSIONS

Our genetic findings provide strong evidence that PTCHD1-AS deletions are risk factors for ASD, and human iPSC-derived neurons implicate these deletions in the neurophysiology of excitatory synapses and in ASD-associated synaptic impairment.

摘要

背景

Xp22.11 基因座包含 PTCHD1、DDX53 和长非编码 RNA PTCHD1-AS,该基因座在患有自闭症谱系障碍(ASD)的男性中经常发生缺失,但这些 ASD 遗传风险因素的功能后果尚不清楚。

方法

为了评估 PTCHD1 基因座缺失的功能后果,我们从未受影响的对照受试者和 3 名患有 ASD 的受试者中生成诱导多能干细胞(iPSC),这些受试者的微缺失影响 PTCHD1-AS/PTCHD1、PTCHD1-AS/DDX53 或仅 PTCHD1-AS。使用分子方法和电生理学评估 iPSC 衍生的皮质神经元的功能。我们还编译了 PTCHD1 基因座的新的和已知的遗传变异,以探索 PTCHD1 和 PTCHD1-AS 在 ASD 和其他神经发育障碍的遗传风险中的作用。最后,使用基因组编辑探索删除 PTCHD1-AS 单个保守外显子的功能后果。

结果

ASD 受试者的 iPSC 衍生神经元表现出减少的微小兴奋性突触后电流频率和 N-甲基-D-天冬氨酸受体功能低下。我们发现,35 个 ASD 相关缺失映射到 PTCHD1 基因座,破坏了 PTCHD1-AS 的外显子。我们还发现了一个新的 ASD 相关的 PTCHD1-AS 外显子 3 缺失,并表明外显子 3 的缺失改变了 PTCHD1-AS 的剪接,而不影响邻近的 PTCHD1 编码基因的表达。最后,靶向破坏 PTCHD1-AS 外显子 3 重现了微小兴奋性突触后电流频率的降低,支持长非编码 RNA 在 ASD 发病机制中的作用。

结论

我们的遗传发现提供了强有力的证据,表明 PTCHD1-AS 缺失是 ASD 的风险因素,人类 iPSC 衍生的神经元表明这些缺失与兴奋性突触的神经生理学和 ASD 相关的突触损伤有关。

相似文献

1
Synaptic Dysfunction in Human Neurons With Autism-Associated Deletions in PTCHD1-AS.
Biol Psychiatry. 2020 Jan 15;87(2):139-149. doi: 10.1016/j.biopsych.2019.07.014. Epub 2019 Jul 29.
2
Disruption of DDX53 coding sequence has limited impact on iPSC-derived human NGN2 neurons.
BMC Med Genomics. 2023 Jan 12;16(1):5. doi: 10.1186/s12920-022-01425-3.
4
Genetic variants in contribute to Autism Spectrum Disorder associated with the Xp22.11 locus.
medRxiv. 2023 Dec 27:2023.12.21.23300383. doi: 10.1101/2023.12.21.23300383.
5
Disruption at the PTCHD1 Locus on Xp22.11 in Autism spectrum disorder and intellectual disability.
Sci Transl Med. 2010 Sep 15;2(49):49ra68. doi: 10.1126/scitranslmed.3001267.
7
Idiopathic Autism: Cellular and Molecular Phenotypes in Pluripotent Stem Cell-Derived Neurons.
Mol Neurobiol. 2017 Aug;54(6):4507-4523. doi: 10.1007/s12035-016-9961-8. Epub 2016 Jun 29.
8
Ptchd1 deficiency induces excitatory synaptic and cognitive dysfunctions in mouse.
Mol Psychiatry. 2018 May;23(5):1356-1367. doi: 10.1038/mp.2017.39. Epub 2017 Apr 18.

引用本文的文献

1
Human Blood-Derived lncRNAs in Autism Spectrum Disorder.
Biomolecules. 2025 Jun 27;15(7):937. doi: 10.3390/biom15070937.
2
Chromosome X-wide common variant association study in autism spectrum disorder.
Am J Hum Genet. 2025 Jan 2;112(1):135-153. doi: 10.1016/j.ajhg.2024.11.008. Epub 2024 Dec 19.
3
Genetic variants in DDX53 contribute to autism spectrum disorder associated with the Xp22.11 locus.
Am J Hum Genet. 2025 Jan 2;112(1):154-167. doi: 10.1016/j.ajhg.2024.11.003. Epub 2024 Dec 19.
4
A deep learning model of dorsal and ventral visual streams for DVSD.
Sci Rep. 2024 Nov 10;14(1):27464. doi: 10.1038/s41598-024-78304-7.
5
An Inducible Luminescent System to Explore Parkinson's Disease-Associated Genes.
Int J Mol Sci. 2024 Aug 31;25(17):9493. doi: 10.3390/ijms25179493.
6
Chromosome X-Wide Common Variant Association Study (XWAS) in Autism Spectrum Disorder.
medRxiv. 2024 Jul 18:2024.07.18.24310640. doi: 10.1101/2024.07.18.24310640.
8
Recent Therapeutic Gene Editing Applications to Genetic Disorders.
Curr Issues Mol Biol. 2024 Apr 30;46(5):4147-4185. doi: 10.3390/cimb46050255.
9
Loss-of-function mutation in DDX53 associated with hereditary spastic paraplegia-like disorder.
J Mol Med (Berl). 2024 Jul;102(7):913-926. doi: 10.1007/s00109-024-02454-4. Epub 2024 May 16.
10
Structural rearrangements as a recurrent pathogenic mechanism for SETBP1 haploinsufficiency.
Hum Genomics. 2024 Mar 22;18(1):29. doi: 10.1186/s40246-024-00600-0.

本文引用的文献

1
SHANK2 mutations associated with autism spectrum disorder cause hyperconnectivity of human neurons.
Nat Neurosci. 2019 Apr;22(4):556-564. doi: 10.1038/s41593-019-0365-8. Epub 2019 Mar 25.
3
Complete Disruption of Autism-Susceptibility Genes by Gene Editing Predominantly Reduces Functional Connectivity of Isogenic Human Neurons.
Stem Cell Reports. 2018 Nov 13;11(5):1211-1225. doi: 10.1016/j.stemcr.2018.10.003. Epub 2018 Nov 1.
4
Cellular Phenotypes in Human iPSC-Derived Neurons from a Genetic Model of Autism Spectrum Disorder.
Cell Rep. 2017 Dec 5;21(10):2678-2687. doi: 10.1016/j.celrep.2017.11.037.
5
Lineage divergence of activity-driven transcription and evolution of cognitive ability.
Nat Rev Neurosci. 2018 Jan;19(1):9-15. doi: 10.1038/nrn.2017.138. Epub 2017 Nov 23.
6
Modeling the Interplay Between Neurons and Astrocytes in Autism Using Human Induced Pluripotent Stem Cells.
Biol Psychiatry. 2018 Apr 1;83(7):569-578. doi: 10.1016/j.biopsych.2017.09.021. Epub 2017 Oct 3.
7
Cellular Functions of the Autism Risk Factor PTCHD1 in Mice.
J Neurosci. 2017 Dec 6;37(49):11993-12005. doi: 10.1523/JNEUROSCI.1393-17.2017. Epub 2017 Nov 8.
8
Identification of novel candidate disease genes from de novo exonic copy number variants.
Genome Med. 2017 Sep 21;9(1):83. doi: 10.1186/s13073-017-0472-7.
9
Spatiotemporal Proteomic Profiling of Human Cerebral Development.
Mol Cell Proteomics. 2017 Sep;16(9):1548-1562. doi: 10.1074/mcp.M116.066274. Epub 2017 Jul 7.
10
Ptchd1 deficiency induces excitatory synaptic and cognitive dysfunctions in mouse.
Mol Psychiatry. 2018 May;23(5):1356-1367. doi: 10.1038/mp.2017.39. Epub 2017 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验