Suppr超能文献

从结构磁共振成像估算体内轴突传导速度。

Estimating axon conduction velocity in vivo from microstructural MRI.

机构信息

Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom; Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.

Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands.

出版信息

Neuroimage. 2019 Dec;203:116186. doi: 10.1016/j.neuroimage.2019.116186. Epub 2019 Sep 19.

Abstract

The conduction velocity (CV) of action potentials along axons is a key neurophysiological property central to neural communication. The ability to estimate CV in humans in vivo from non-invasive MRI methods would therefore represent a significant advance in neuroscience. However, there are two major challenges that this paper aims to address: (1) Much of the complexity of the neurophysiology of action potentials cannot be captured with currently available MRI techniques. Therefore, we seek to establish the variability in CV that can be captured when predicting CV purely from parameters that have been reported to be estimatable from MRI: inner axon diameter (AD) and g-ratio. (2) errors inherent in existing MRI-based biophysical models of tissue will propagate through to estimates of CV, the extent to which is currently unknown. Issue (1) is investigated by performing a sensitivity analysis on a comprehensive model of axon electrophysiology and determining the relative sensitivity to various morphological and electrical parameters. The investigations suggest that 85% of the variance in CV is accounted for by variation in AD and g-ratio. The observed dependency of CV on AD and g-ratio is well characterised by the previously reported model by Rushton. Issue (2) is investigated through simulation of diffusion and relaxometry MRI data for a range of axon morphologies, applying models of restricted diffusion and relaxation processes to derive estimates of axon volume fraction (AVF), AD and g-ratio and estimating CV from the derived parameters. The results show that errors in the AVF have the biggest detrimental impact on estimates of CV, particularly for sparse fibre populations (AVF<0.3). For our equipment set-up and acquisition protocol, CV estimates are most accurate (below 5% error) where AVF is above 0.3, g-ratio is between 0.6 and 0.85 and AD is high (above 4μm). CV estimates are robust to errors in g-ratio estimation but are highly sensitive to errors in AD estimation, particularly where ADs are small. We additionally show CV estimates in human corpus callosum in a small number of subjects. In conclusion, we demonstrate accurate CV estimates are possible in regions of the brain where AD is sufficiently large. Problems with estimating ADs for smaller axons presents a problem for estimating CV across the whole CNS and should be the focus of further study.

摘要

动作电位沿轴突的传导速度(CV)是神经通讯的关键神经生理特性。因此,能够从非侵入性 MRI 方法中在体内估算人类的 CV 将代表神经科学的重大进展。然而,这篇论文旨在解决两个主要挑战:(1)目前可用的 MRI 技术无法捕捉到动作电位神经生理学的大部分复杂性。因此,我们试图建立仅从已报道可从 MRI 估计的参数(内轴直径(AD)和 g 比)预测 CV 时可捕捉到的 CV 变异性。(2)组织中现有的基于 MRI 的生物物理模型固有的误差将传播到 CV 的估计值中,目前尚不清楚这种程度。通过对轴突电生理学的综合模型进行敏感性分析来研究问题(1),并确定对各种形态和电参数的相对敏感性。研究表明,CV 的 85%变化归因于 AD 和 g 比的变化。CV 对 AD 和 g 比的依赖性由 Rushton 先前报道的模型很好地描述。通过对一系列轴突形态的扩散和弛豫 MRI 数据进行模拟,来研究问题(2),应用受限扩散和弛豫过程的模型来推导轴突体积分数(AVF)、AD 和 g 比的估计值,并从推导的参数中估算 CV。结果表明,AVF 中的误差对 CV 估计的影响最大,尤其是对于稀疏纤维群体(AVF<0.3)。对于我们的设备设置和采集协议,在 AVF 高于 0.3、g 比在 0.6 到 0.85 之间且 AD 较高(高于 4μm)时,CV 估计最准确(误差低于 5%)。CV 估计对 g 比估计误差具有鲁棒性,但对 AD 估计误差高度敏感,特别是在 AD 较小时。我们还在少数几个对象中展示了人类胼胝体的 CV 估计值。总之,我们证明在 AD 足够大的大脑区域中可以进行准确的 CV 估计。对于较小轴突的 AD 估计问题,这对整个中枢神经系统的 CV 估计提出了一个问题,应该成为进一步研究的重点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验