Gast Hila, Assaf Yaniv
Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
The Strauss Center for Neuroimaging, Tel Aviv University, Tel Aviv, Israel.
Netw Neurosci. 2024 Apr 1;8(1):119-137. doi: 10.1162/netn_a_00342. eCollection 2024.
Brain function does not emerge from isolated activity, but rather from the interactions and exchanges between neural elements that form a network known as the connectome. The human connectome consists of structural and functional aspects. The structural connectome (SC) represents the anatomical connections, and the functional connectome represents the resulting dynamics that emerge from this arrangement of structures. As there are different ways of weighting these connections, it is important to consider how such different approaches impact study conclusions. Here, we propose that different weighted connectomes result in varied network properties, and while neither superior the other, selection might affect interpretation and conclusions in different study cases. We present three different weighting models, namely, number of streamlines (NOS), fractional anisotropy (FA), and axon diameter distribution (ADD), to demonstrate these differences. The later, is extracted using recently published AxSI method and is first compared to commonly used weighting methods. Moreover, we explore the functional relevance of each weighted SC, using the Human Connectome Project (HCP) database. By analyzing intelligence-related data, we develop a predictive model for cognitive performance based on graph properties and the National Institutes of Health (NIH) toolbox. Results demonstrate that the ADD SC, combined with a functional subnetwork model, outperforms other models in estimating cognitive performance.
脑功能并非源于孤立的活动,而是源于构成被称为连接组的网络的神经元件之间的相互作用和交换。人类连接组由结构和功能两个方面组成。结构连接组(SC)代表解剖学连接,而功能连接组代表由这种结构排列产生的动态变化。由于对这些连接进行加权的方式不同,因此考虑这些不同方法如何影响研究结论很重要。在这里,我们提出不同加权连接组会导致不同的网络属性,虽然没有一种比另一种更优越,但选择可能会影响不同研究案例中的解释和结论。我们提出三种不同的加权模型,即流线数量(NOS)、分数各向异性(FA)和轴突直径分布(ADD),以证明这些差异。后者是使用最近发表的AxSI方法提取的,并首次与常用的加权方法进行比较。此外,我们使用人类连接组计划(HCP)数据库探索每个加权SC的功能相关性。通过分析与智力相关的数据,我们基于图属性和美国国立卫生研究院(NIH)工具箱开发了一种认知表现预测模型。结果表明,ADD SC与功能子网模型相结合,在估计认知表现方面优于其他模型。