Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
Nat Commun. 2024 Apr 26;15(1):3570. doi: 10.1038/s41467-024-47860-x.
Traveling waves and neural oscillation frequency gradients are pervasive in the human cortex. While the direction of traveling waves has been linked to brain function and dysfunction, the factors that determine this direction remain elusive. We hypothesized that structural connectivity instrength gradients - defined as the gradually varying sum of incoming connection strengths across the cortex - could shape both traveling wave direction and frequency gradients. We confirm the presence of instrength gradients in the human connectome across diverse cohorts and parcellations. Using a cortical network model, we demonstrate how these instrength gradients direct traveling waves and shape frequency gradients. Our model fits resting-state MEG functional connectivity best in a regime where instrength-directed traveling waves and frequency gradients emerge. We further show how structural subnetworks of the human connectome generate opposing wave directions and frequency gradients observed in the alpha and beta bands. Our findings suggest that structural connectivity instrength gradients affect both traveling wave direction and frequency gradients.
行波和神经振荡频率梯度在人类大脑皮层中普遍存在。虽然行波的方向与大脑的功能和功能障碍有关,但决定行波方向的因素仍然难以捉摸。我们假设结构连接强度梯度——定义为皮层上传入连接强度的逐渐变化总和——可以塑造行波的方向和频率梯度。我们在不同的队列和分割中确认了人类连接组中存在强度梯度。使用皮质网络模型,我们展示了这些强度梯度如何引导行波并形成频率梯度。我们的模型在强度引导的行波和频率梯度出现的区域中,最适合拟合静息状态 MEG 功能连接。我们进一步展示了人类连接组的结构子网如何产生在 alpha 和 beta 频段中观察到的相反的波方向和频率梯度。我们的发现表明,结构连接强度梯度会影响行波的方向和频率梯度。