CATIE - Centre Aquitain des Technologies de l'Information et Electroniques, Talence, France; Univ. Bordeaux, CNRS, Laboratoire IMS, UMR 5218, Talence, France.
Univ. Bordeaux, CNRS, Laboratoire IMS, UMR 5218, Talence, France.
Hum Mov Sci. 2019 Oct;67:102518. doi: 10.1016/j.humov.2019.102518. Epub 2019 Sep 19.
Fluctuations in cyclic tasks periods is a known characteristic of human motor control. Specifically, long-range fractal fluctuations have been evidenced in the temporal structure of these variations in human locomotion and thought to be the outcome of a multicomponent physiologic system in which control is distributed across intricate cortical, spinal and neuromuscular regulation loops. Combined with long-range correlation analyses, short-range autocorrelations have proven their use to describe control distribution across central and motor components. We used relevant tools to characterize long- and short-range correlations in revolution time series during cycling on an ergometer in 19 healthy young adults. We evaluated the impact of introducing a cognitive task (PASAT) to assess the role of central structures in control organization. Autocorrelation function and detrending fluctuation analysis (DFA) demonstrated the presence of fractal scaling. PSD in the short range revealed a singular behavior which cannot be explained by the usual models of even-based and emergent timing. The main outcomes are that (1) timing in cycling is a fractal process, (2) this long-range fractal behavior increases in persistence with dual-task condition, which has not been previously observed, (3) short-range behavior is highly persistent and unaffected by dual-task. Relying on the inertia of the oscillator may be a way to distribute more control to the periphery, thereby allocating less resources to central process and better managing additional cognitive demands. This original behavior in cycling may explain the high short-range persistence unaffected by dual-task, and the increase in long-range persistence with dual-task.
在循环任务期间,周期波动是人类运动控制的一个已知特征。具体来说,在人类运动和思维的这些变化的时间结构中已经证明了长程分形波动,并且被认为是控制分布在复杂的皮质、脊髓和神经肌肉调节回路中的多分量生理系统的结果。结合长程相关分析,短程自相关已被证明可用于描述中央和运动成分之间的控制分布。我们使用相关工具来描述在 19 名健康年轻成年人在测力计上进行自行车运动时的旋转时间序列中的长程和短程相关性。我们评估了引入认知任务(PASAT)来评估中央结构在控制组织中的作用的影响。自相关函数和去趋势波动分析(DFA)证明了分形缩放的存在。短程 PSD 显示出奇异行为,无法用常规的基于偶数的和新兴定时模型来解释。主要结果是:(1) 自行车运动的计时是一个分形过程;(2) 这种长程分形行为在双任务条件下持续增加,这是以前没有观察到的;(3) 短程行为具有高度的持续性,不受双任务影响。依赖振荡器的惯性可能是将更多控制分配到外围的一种方式,从而减少对中央过程的资源分配,并更好地管理额外的认知需求。这种在自行车运动中的原始行为可以解释不受双任务影响的高短程持续性,以及双任务时长程持续性的增加。