Suppr超能文献

通过气流声谱图、长期平均谱和专业听众评估分析歌唱中的情感表达

Analyzing Emotion Expression in Singing via Flow Glottograms, Long-Term-Average Spectra, and Expert Listener Evaluation.

作者信息

Sundberg Johan, Salomão Gláucia Laís, Scherer Klaus R

机构信息

Department of Speech Music Hearing, School of Electrical Engineering and Computer Science, KTH, Stockholm, Sweden; University College of Music Education Stockholm, Stockholm, Sweden.

Department of Linguistics, Stockholm University, Stockholm, Sweden.

出版信息

J Voice. 2021 Jan;35(1):52-60. doi: 10.1016/j.jvoice.2019.08.007. Epub 2019 Sep 20.

Abstract

BACKGROUND

Acoustic aspects of emotional expressivity in speech have been analyzed extensively during recent decades. Emotional coloring is an important if not the most important property of sung performance, and therefore strictly controlled. Hence, emotional expressivity in singing may promote a deeper insight into vocal signaling of emotions. Furthermore, physiological voice source parameters can be assumed to facilitate the understanding of acoustical characteristics.

METHOD

Three highly experienced professional male singers sang scales on the vowel /ae/ or /a/ in 10 emotional colors (Neutral, Sadness, Tender, Calm, Joy, Contempt, Fear, Pride, Love, Arousal, and Anger). Sixteen voice experts classified the scales in a forced-choice listening test, and the result was compared with long-term-average spectrum (LTAS) parameters and with voice source parameters, derived from flow glottograms (FLOGG) that were obtained from inverse filtering the audio signal.

RESULTS

On the basis of component analysis, the emotions could be grouped into four "families", Anger-Contempt, Joy-Love-Pride, Calm-Tender-Neutral and Sad-Fear. Recognition of the intended emotion families by listeners reached accuracy levels far beyond chance level. For the LTAS and FLOGG parameters, vocal loudness had a paramount influence on all. Also after partialing out this factor, some significant correlations were found between FLOGG and LTAS parameters. These parameters could be sorted into groups that were associated with the emotion families.

CONCLUSIONS

(i) Both LTAS and FLOGG parameters varied significantly with the enactment intentions of the singers. (ii) Some aspects of the voice source are reflected in LTAS parameters. (iii) LTAS parameters affect listener judgment of the enacted emotions and the accuracy of the intended emotional coloring.

摘要

背景

近几十年来,人们对言语中情感表达的声学方面进行了广泛分析。情感色彩是演唱表演中一项重要(即便不是最重要)的属性,因此受到严格控制。所以,歌唱中的情感表达可能有助于更深入地洞察情感的发声信号。此外,可以假定生理声源参数有助于理解声学特征。

方法

三位经验丰富的专业男性歌手用10种情感色彩(中性、悲伤、温柔、平静、喜悦、轻蔑、恐惧、骄傲、爱、激动和愤怒)演唱了元音/æ/或/a/的音阶。16位嗓音专家在强制选择听力测试中对音阶进行分类,并将结果与长期平均谱(LTAS)参数以及从音频信号逆滤波得到的气流声门图(FLOGG)导出的声源参数进行比较。

结果

基于成分分析,情感可分为四个“类别”,即愤怒 - 轻蔑、喜悦 - 爱 - 骄傲、平静 - 温柔 - 中性和悲伤 - 恐惧。听众对预期情感类别的识别准确率远高于随机水平。对于LTAS和FLOGG参数,嗓音响度对所有参数都有至关重要的影响。在排除这个因素后,FLOGG和LTAS参数之间也发现了一些显著的相关性。这些参数可以分为与情感类别相关的组。

结论

(i)LTAS和FLOGG参数都随歌手的表演意图而显著变化。(ii)声源的某些方面反映在LTAS参数中。(iii)LTAS参数影响听众对表演情感的判断以及预期情感色彩的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验