Department of Cognitive Neuroscience, Maastricht Brain Imaging Centre (MBIC), Faculty of Psychology & Neuroscience, Maastricht University, PO Box 616, Oxfordlaan 55, 6229 ER, 6200MD, Maastricht, the Netherlands.
Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon, South Korea; Department of Biomedical Engineering, N Center, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon, South Korea; Techna Institute & Koerner Scientist in MR Imaging, University Health Network, 121-100 College Street, M5G 1L5, Toronto, Canada.
Neuroimage. 2020 Jan 1;204:116209. doi: 10.1016/j.neuroimage.2019.116209. Epub 2019 Sep 20.
High-resolution functional magnetic resonance imaging (fMRI) using blood oxygenation dependent level-dependent (BOLD) signal is an increasingly popular tool to non-invasively examine neuronal processes at the mesoscopic level. However, as the BOLD signal stems from hemodynamic changes, its temporal and spatial properties do not match those of the underlying neuronal activity. In particular, the laminar BOLD response (LBR), commonly measured with gradient-echo (GE) MRI sequence, is confounded by non-local changes in deoxygenated hemoglobin and cerebral blood volume propagated within intracortical ascending veins, leading to a unidirectional blurring of the neuronal activity distribution towards the cortical surface. Here, we present a new cortical depth-dependent model of the BOLD response based on the principle of mass conservation, which takes the effect of ascending (and pial) veins on the cortical BOLD responses explicitly into account. It can be used to dynamically model cortical depth profiles of the BOLD signal as a function of various baseline- and activity-related physiological parameters for any spatiotemporal distribution of neuronal changes. We demonstrate that the commonly observed spatial increase of LBR is mainly due to baseline blood volume increase towards the surface. In contrast, an occasionally observed local maximum in the LBR (i.e. the so-called "bump") is mainly due to spatially inhomogeneous neuronal changes rather than locally higher baseline blood volume. In addition, we show that the GE-BOLD signal laminar point-spread functions, representing the signal leakage towards the surface, depend on several physiological parameters and on the level of neuronal activity. Furthermore, even in the case of simultaneous neuronal changes at each depth, inter-laminar delays of LBR transients are present due to the ascending vein. In summary, the model provides a conceptual framework for the biophysical interpretation of common experimental observations in high-resolution fMRI data. In the future, the model will allow for deconvolution of the spatiotemporal hemodynamic bias of the LBR and provide an estimate of the underlying laminar excitatory and inhibitory neuronal activity.
高分辨率功能磁共振成像(fMRI)使用血氧水平依赖(BOLD)信号是一种越来越受欢迎的工具,可非侵入性地检查介观水平的神经元过程。然而,由于 BOLD 信号源自血液动力学变化,其时间和空间特性与基础神经元活动不匹配。特别是,通常使用梯度回波(GE)MRI 序列测量的层状 BOLD 响应(LBR)受到脱氧血红蛋白的非局部变化以及皮层内上升静脉内传播的脑血流体积的影响,导致神经元活动分布朝着皮层表面的单向模糊。在这里,我们提出了一种基于质量守恒原理的新的皮质深度依赖的 BOLD 响应模型,该模型明确考虑了上升(和脑皮层)静脉对皮质 BOLD 响应的影响。它可以用于动态模拟 BOLD 信号的皮质深度分布作为各种基线和活动相关生理参数的函数,用于任何神经元变化的时空分布。我们证明,通常观察到的 LBR 空间增加主要是由于表面的基线血容量增加。相比之下,LBR 中偶尔观察到的局部最大值(即所谓的“凸起”)主要是由于空间不均匀的神经元变化,而不是局部更高的基线血容量。此外,我们表明,代表信号向表面泄漏的 GE-BOLD 信号层状点扩散函数取决于几个生理参数和神经元活动水平。此外,即使在每个深度处同时发生神经元变化的情况下,由于上升静脉,LBR 瞬态的层间延迟仍然存在。总之,该模型为高分辨率 fMRI 数据中常见实验观察的生物物理解释提供了概念框架。在未来,该模型将允许对 LBR 的时空血液动力学偏差进行反卷积,并提供对基础层状兴奋性和抑制性神经元活动的估计。