BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany.
Colloids Surf B Biointerfaces. 2013 Apr 1;104:213-20. doi: 10.1016/j.colsurfb.2012.11.019. Epub 2012 Dec 3.
The study of protein corona formation on nanoparticles (NPs) represents an actual main issue in colloidal, biomedical and toxicological sciences. However, little is known about the influence of polymer shells on the formation and time evolution of protein corona onto functionalized NPs. Therefore, silica-poly(ethylene glycol) core-shell nanohybrids (SNPs@PEG) with different polymer molecular weights (MW) were synthesized and exhaustively characterized. Bovine serum albumin (BSA) at different concentrations (0.1-6 wt%) was used as model protein to study protein corona formation and time evolution. For pristine SNPs and SNPs@PEG (MW=350 g/mol), zeta potential at different incubation times show a dynamical evolution of the nanoparticle-protein corona. Oppositely, for SNPs@PEG with MW≥2000 g/mol a significant suppression of corona formation and time evolution was observed. Furthermore, AFM investigations suggest a different orientation (side-chain or perpendicular) and penetration depth of BSA toward PEGylated surfaces depending on the polymer length which may explain differences in protein corona evolution.
纳米颗粒(NPs)上蛋白质冠形成的研究是胶体、生物医学和毒理学科学中的一个实际主要问题。然而,对于聚合物壳对功能化 NPs 上蛋白质冠的形成和时间演变的影响知之甚少。因此,合成并详细表征了具有不同聚合物分子量(MW)的硅石-聚乙二醇核壳纳米杂化物(SNP@PEG)。使用牛血清白蛋白(BSA)作为模型蛋白,在不同浓度(0.1-6wt%)下研究蛋白质冠的形成和时间演变。对于原始 SNP 和 SNP@PEG(MW=350g/mol),在不同孵育时间的 ζ 电位显示出纳米颗粒-蛋白质冠的动态演变。相反,对于 MW≥2000g/mol 的 SNP@PEG,观察到冠形成和时间演变的显著抑制。此外,AFM 研究表明,BSA 对聚乙二醇化表面的取向(侧链或垂直)和穿透深度取决于聚合物长度,这可能解释了蛋白质冠演化的差异。