Suppr超能文献

基于深度学习技术的多模态微波超声乳腺成像增强。

Enhancement of Multimodal Microwave-Ultrasound Breast Imaging Using a Deep-Learning Technique.

机构信息

Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB R3T 5V6 1, Canada.

出版信息

Sensors (Basel). 2019 Sep 19;19(18):4050. doi: 10.3390/s19184050.

Abstract

We present a deep learning method used in conjunction with dual-modal microwave-ultrasound imaging to produce tomographic reconstructions of the complex-valued permittivity of numerical breast phantoms. We also assess tumor segmentation performance using the reconstructed permittivity as a feature. The contrast source inversion (CSI) technique is used to create the complex-permittivity images of the breast with ultrasound-derived tissue regions utilized as prior information. However, imaging artifacts make the detection of tumors difficult. To overcome this issue we train a convolutional neural network (CNN) that takes in, as input, the dual-modal CSI reconstruction and attempts to produce the true image of the complex tissue permittivity. The neural network consists of successive convolutional and downsampling layers, followed by successive deconvolutional and upsampling layers based on the U-Net architecture. To train the neural network, the input-output pairs consist of CSI's dual-modal reconstructions, along with the true numerical phantom images from which the microwave scattered field was synthetically generated. The reconstructed permittivity images produced by the CNN show that the network is not only able to remove the artifacts that are typical of CSI reconstructions, but can also improve the detectability of tumors. The performance of the CNN is assessed using a four-fold cross-validation on our dataset that shows improvement over CSI both in terms of reconstruction error and tumor segmentation performance.

摘要

我们提出了一种深度学习方法,该方法与双模态微波超声成像相结合,对数值乳房体模的复介电常数进行层析重建。我们还评估了使用重建介电常数作为特征的肿瘤分割性能。对比源反演(CSI)技术用于创建具有超声衍生组织区域作为先验信息的乳房复介电常数图像。然而,成像伪影使得肿瘤的检测变得困难。为了克服这个问题,我们训练了一个卷积神经网络(CNN),该网络将双模态 CSI 重建作为输入,并尝试生成真实的复组织介电常数图像。该神经网络由连续的卷积和下采样层组成,然后是基于 U-Net 架构的连续反卷积和上采样层。为了训练神经网络,输入-输出对由 CSI 的双模态重建以及从微波散射场合成生成的真实数值体模图像组成。CNN 生成的重建介电常数图像表明,该网络不仅能够去除 CSI 重建中典型的伪影,而且还能够提高肿瘤的可检测性。我们使用四折交叉验证对数据集进行了性能评估,结果表明 CNN 在重建误差和肿瘤分割性能方面都优于 CSI。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d58/6767656/e0d0115d96c5/sensors-19-04050-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验