School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane 4072, Australia.
Sensors (Basel). 2023 Dec 19;24(1):8. doi: 10.3390/s24010008.
Deep learning has become a powerful tool for solving inverse problems in electromagnetic medical imaging. However, contemporary deep-learning-based approaches are susceptible to inaccuracies stemming from inadequate training datasets, primarily consisting of signals generated from simplified and homogeneous imaging scenarios. This paper introduces a novel methodology to construct an expansive and diverse database encompassing domains featuring randomly shaped structures with electrical properties representative of healthy and abnormal tissues. The core objective of this database is to enable the training of universal deep-learning techniques for permittivity profile reconstruction in complex electromagnetic medical imaging domains. The constructed database contains 25,000 unique objects created by superimposing from 6 to 24 randomly sized ellipses and polygons with varying electrical attributes. Introducing randomness in the database enhances training, allowing the neural network to achieve universality while reducing the risk of overfitting. The representative signals in the database are generated using an array of antennas that irradiate the imaging domain and capture scattered signals. A custom-designed U-net is trained by using those signals to generate the permittivity profile of the defined imaging domain. To assess the database and confirm the universality of the trained network, three distinct testing datasets with diverse objects are imaged using the designed U-net. Quantitative assessments of the generated images show promising results, with structural similarity scores consistently exceeding 0.84, normalized root mean square errors remaining below 14%, and peak signal-to-noise ratios exceeding 33 dB. These results demonstrate the practicality of the constructed database for training deep learning networks that have generalization capabilities in solving inverse problems in medical imaging without the need for additional physical assistant algorithms.
深度学习已成为解决电磁医学成像逆问题的强大工具。然而,当前基于深度学习的方法容易受到不准确的影响,主要是由于训练数据集不足,这些数据集主要由简化和均匀的成像场景产生的信号组成。本文介绍了一种新的方法,用于构建一个广泛而多样的数据库,其中包含具有电特性的随机形状结构的领域,这些电特性代表健康和异常组织。该数据库的核心目标是能够训练通用的深度学习技术,用于在复杂的电磁医学成像领域中重建介电常数分布。该数据库包含 25000 个独特的对象,这些对象是通过将 6 到 24 个随机大小的椭圆和多边形叠加而成的,具有不同的电属性。在数据库中引入随机性可以增强训练,使神经网络能够实现通用性,同时降低过拟合的风险。数据库中的代表性信号是使用一组天线产生的,这些天线可以照射成像域并捕获散射信号。使用这些信号来训练一个定制的 U-net,以生成定义的成像域的介电常数分布。为了评估数据库并确认训练网络的通用性,使用设计的 U-net 对三个具有不同对象的不同测试数据集进行成像。对生成图像的定量评估显示出了有希望的结果,结构相似性得分始终超过 0.84,归一化均方根误差保持在 14%以下,峰值信噪比超过 33dB。这些结果表明,该数据库对于训练具有泛化能力的深度学习网络是实用的,可以在不需要额外的物理辅助算法的情况下解决医学成像中的逆问题。