Suppr超能文献

用于电磁逆散射问题的两步对比度源学习方法

Two-Step Contrast Source Learning Method for Electromagnetic Inverse Scattering Problems.

作者信息

Si Anran, Wang Miao, Fang Fuping, Dai Dahai

机构信息

College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China.

出版信息

Sensors (Basel). 2024 Sep 16;24(18):5997. doi: 10.3390/s24185997.

Abstract

This article is devoted to solving full-wave electromagnetic inverse scattering problems (EM-ISPs), which determine the geometrical and physical properties of scatterers from the knowledge of scattered fields. Due to the intrinsic ill-posedness and nonlinearity of EM-ISPs, traditional non-iterative and iterative methods struggle to meet the requirements of high accuracy and real-time reconstruction. To overcome these issues, we propose a two-step contrast source learning approach, cascading convolutional neural networks (CNNs) into the inversion framework, to tackle 2D full-wave EM-ISPs. In the first step, a contrast source network based on the CNNs architecture takes the determined part of the contrast source as input and then outputs an estimate of the total contrast source. Then, the recovered total contrast source is directly converted into the initial contrast. In the second step, the rough initial contrast obtained beforehand is input into the U-Net for refinement. Consequently, the EM-ISPs can be quickly solved with much higher accuracy, even for high-contrast objects, almost achieving real-time imaging. Numerical examples have demonstrated that the proposed two-step contrast source learning approach is able to improve accuracy and robustness even for high-contrast scatterers. The proposed approach offers a promising avenue for advancing EM-ISPs by integrating strengths from both traditional and deep learning-based approaches, to achieve real-time quantitative microwave imaging for high-contrast objects.

摘要

本文致力于解决全波电磁逆散射问题(EM-ISPs),该问题可根据散射场的信息确定散射体的几何和物理特性。由于EM-ISPs固有的不适定性和非线性,传统的非迭代和迭代方法难以满足高精度和实时重建的要求。为克服这些问题,我们提出一种两步对比源学习方法,将卷积神经网络(CNNs)级联到反演框架中,以解决二维全波EM-ISPs。第一步,基于CNNs架构的对比源网络将对比源的已确定部分作为输入,然后输出总对比源的估计值。然后,将恢复的总对比源直接转换为初始对比度。第二步,将预先获得的粗略初始对比度输入到U-Net中进行细化。因此,即使对于高对比度物体,EM-ISPs也能以更高的精度快速求解,几乎实现实时成像。数值算例表明,所提出的两步对比源学习方法即使对于高对比度散射体也能提高精度和鲁棒性。所提出的方法通过整合传统方法和基于深度学习方法的优势,为推进EM-ISPs提供了一条有前景的途径,以实现高对比度物体的实时定量微波成像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4af1/11435635/1fcc09c5d392/sensors-24-05997-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验