Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada.
Epigenetics Chromatin. 2019 Sep 23;12(1):56. doi: 10.1186/s13072-019-0303-8.
Biofilm formation or flocculation is a major phenotype in wild type budding yeasts but rarely seen in laboratory yeast strains. Here, we analysed flocculation phenotypes and the expression of FLO genes in laboratory strains with various genetic backgrounds.
We show that mutations in histone chaperones, the helicase RRM3 and the Histone Deacetylase HDA1 de-repress the FLO genes and partially reconstitute flocculation. We demonstrate that the loss of repression correlates to elevated expression of several FLO genes, to increased acetylation of histones at the promoter of FLO1 and to variegated expression of FLO11. We show that these effects are related to the activity of CAF-1 at the replication forks. We also demonstrate that nitrogen starvation or inhibition of histone deacetylases do not produce flocculation in W303 and BY4742 strains but do so in strains compromised for chromatin maintenance. Finally, we correlate the de-repression of FLO genes to the loss of silencing at the subtelomeric and mating type gene loci.
We conclude that the deregulation of chromatin maintenance and transmission is sufficient to reconstitute flocculation in laboratory yeast strains. Consequently, we propose that a gain in epigenetic silencing is a major contributing factor for the loss of flocculation phenotypes in these strains. We suggest that flocculation in yeasts provides an excellent model for addressing the challenging issue of how epigenetic mechanisms contribute to evolution.
生物膜形成或絮凝是野生型出芽酵母的主要表型,但在实验室酵母菌株中很少见。在这里,我们分析了具有不同遗传背景的实验室菌株的絮凝表型和 FLO 基因的表达。
我们表明,组蛋白伴侣、解旋酶 RRM3 和组蛋白去乙酰化酶 HDA1 的突变解除了 FLO 基因的抑制,并部分重建了絮凝。我们证明,抑制的丧失与几个 FLO 基因的表达升高、FLO1 启动子处组蛋白的乙酰化增加以及 FLO11 的斑驳表达相关。我们表明,这些效应与复制叉处 CAF-1 的活性有关。我们还表明,氮饥饿或组蛋白去乙酰化酶的抑制不会在 W303 和 BY4742 菌株中产生絮凝,但在染色质维持受损的菌株中会产生絮凝。最后,我们将 FLO 基因的去抑制与端粒和交配型基因座的沉默丧失相关联。
我们得出结论,染色质维持和传递的失调足以在实验室酵母菌株中重建絮凝。因此,我们提出,表观遗传沉默的增加是这些菌株丧失絮凝表型的一个主要因素。我们建议,酵母中的絮凝为解决表观遗传机制如何有助于进化这一具有挑战性的问题提供了一个极好的模型。