Suppr超能文献

宿主遗传多样性限制寄生虫在农业系统之外的成功:一项荟萃分析。

Host genetic diversity limits parasite success beyond agricultural systems: a meta-analysis.

机构信息

Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.

出版信息

Proc Biol Sci. 2019 Sep 25;286(1911):20191811. doi: 10.1098/rspb.2019.1811.

Abstract

There is evidence that human activities are reducing the population genetic diversity of species worldwide. Given the prediction that parasites better exploit genetically homogeneous host populations, many species could be vulnerable to disease outbreaks. While agricultural studies have shown the devastating effects of infectious disease in crop monocultures, the widespread nature of this diversity-disease relationship remains unclear in natural systems. Here, we provide broad support that high population genetic diversity can protect against infectious disease by conducting a meta-analysis of 23 studies, with a total of 67 effect sizes. We found that parasite functional group (micro- or macroparasite) affects the presence of the effect and study setting (field or laboratory-based environment) influences the magnitude. Our study also suggests that host genetic diversity is overall a robust defence against infection regardless of host reproduction, parasite host range, parasite diversity, virulence and the method by which parasite success was recorded. Combined, these results highlight the importance of monitoring declines of host population genetic diversity as shifts in parasite distributions could have devastating effects on at-risk populations in nature.

摘要

有证据表明,人类活动正在降低全球物种的种群遗传多样性。鉴于寄生虫更容易利用遗传上同质的宿主种群的预测,许多物种可能容易受到疾病爆发的影响。虽然农业研究表明传染病在作物单一种植中的破坏性影响,但在自然系统中,这种多样性-疾病关系的广泛性质仍不清楚。在这里,我们通过对 23 项研究进行荟萃分析,提供了广泛的支持,即高种群遗传多样性可以通过 67 个效应大小来预防传染病。我们发现寄生虫功能群(微观或宏观寄生虫)影响效应的存在,研究环境(野外或实验室环境)影响效应的大小。我们的研究还表明,无论宿主繁殖、寄生虫宿主范围、寄生虫多样性、毒力以及记录寄生虫成功的方法如何,宿主遗传多样性总体上都是抵御感染的有力防御。综合来看,这些结果强调了监测宿主种群遗传多样性下降的重要性,因为寄生虫分布的变化可能对自然界中处于危险中的种群产生毁灭性影响。

相似文献

1
Host genetic diversity limits parasite success beyond agricultural systems: a meta-analysis.
Proc Biol Sci. 2019 Sep 25;286(1911):20191811. doi: 10.1098/rspb.2019.1811.
2
3
Can host ecology and kin selection predict parasite virulence?
Parasitology. 2014 Jul;141(8):1018-30. doi: 10.1017/S0031182014000389. Epub 2014 Apr 28.
4
Plant-parasite coevolution: bridging the gap between genetics and ecology.
Annu Rev Phytopathol. 2011;49:345-67. doi: 10.1146/annurev-phyto-072910-095301.
5
The ghost of hosts past: impacts of host extinction on parasite specificity.
Philos Trans R Soc Lond B Biol Sci. 2021 Nov 8;376(1837):20200351. doi: 10.1098/rstb.2020.0351. Epub 2021 Sep 20.
6
Genetic diversity of Daphnia magna populations enhances resistance to parasites.
Ecol Lett. 2008 Sep;11(9):918-28. doi: 10.1111/j.1461-0248.2008.01203.x. Epub 2008 May 9.
9
Genetic diversity and disease: The past, present, and future of an old idea.
Evolution. 2022 Feb;76(S1):20-36. doi: 10.1111/evo.14395. Epub 2021 Nov 19.
10
Causation without correlation: parasite-mediated frequency-dependent selection and infection prevalence.
Biol Lett. 2021 Dec;17(12):20210321. doi: 10.1098/rsbl.2021.0321. Epub 2021 Dec 22.

引用本文的文献

1
Host prior exposure augments heterogeneity in gene expression in both host and pathogen during infection.
bioRxiv. 2025 Aug 24:2025.08.20.671316. doi: 10.1101/2025.08.20.671316.
2
A Conceptual Disease Cycle Model to Link the Size of Past and Future Epidemics.
Ecol Evol. 2025 Jul 28;15(8):e71868. doi: 10.1002/ece3.71868. eCollection 2025 Aug.
3
Host-related genetic differentiation of a polyxenic avian ectoparasite, (Hippoboscidae).
Int J Parasitol Parasites Wildl. 2025 May 12;27:101081. doi: 10.1016/j.ijppaw.2025.101081. eCollection 2025 Aug.
5
Invasion potential of hornets (Hymenoptera: Vespidae: spp.).
Front Insect Sci. 2023 May 9;3:1145158. doi: 10.3389/finsc.2023.1145158. eCollection 2023.
6
Gastrointestinal parasites of Peltocephalus dumerilianus (Testudines: Podocnemididae) from Jaú National Park, Brazilian Amazon.
Rev Bras Parasitol Vet. 2024 Feb 12;33(1):e013823. doi: 10.1590/S1984-29612024013. eCollection 2024.
7
Loss of species and genetic diversity during colonization: Insights from acanthocephalan parasites in northern European seals.
Ecol Evol. 2023 Oct 19;13(10):e10608. doi: 10.1002/ece3.10608. eCollection 2023 Oct.
9
COVID-19 crisis interlinkage with past pandemics and their effects on food security.
Global Health. 2023 Jul 31;19(1):52. doi: 10.1186/s12992-023-00952-7.
10
A Selection of 14 Tetrameric Microsatellite Markers for Genetic Investigations in Fallow Deer ().
Animals (Basel). 2023 Jun 23;13(13):2083. doi: 10.3390/ani13132083.

本文引用的文献

1
Host Specificity in Variable Environments.
Trends Parasitol. 2019 Jun;35(6):452-465. doi: 10.1016/j.pt.2019.04.001. Epub 2019 Apr 29.
2
The Phylogeny and Pathogenesis of (SBV) Infection in European Honey Bees, .
Viruses. 2019 Jan 14;11(1):61. doi: 10.3390/v11010061.
4
Parasite infection of specific host genotypes relates to changes in prevalence in two natural populations of bumblebees.
Infect Genet Evol. 2017 Dec;56:125-132. doi: 10.1016/j.meegid.2017.11.019. Epub 2017 Nov 16.
5
Cultivar mixtures: a meta-analysis of the effect of intraspecific diversity on crop yield.
Ecol Appl. 2018 Jan;28(1):62-77. doi: 10.1002/eap.1629. Epub 2017 Dec 8.
7
Estimates of local biodiversity change over time stand up to scrutiny.
Ecology. 2017 Feb;98(2):583-590. doi: 10.1002/ecy.1660. Epub 2017 Jan 9.
8
The effects of inbreeding on disease susceptibility: Gyrodactylus turnbulli infection of guppies, Poecilia reticulata.
Exp Parasitol. 2016 Aug;167:32-7. doi: 10.1016/j.exppara.2016.04.018. Epub 2016 Apr 27.
9
The diversity-generating benefits of a prokaryotic adaptive immune system.
Nature. 2016 Apr 21;532(7599):385-8. doi: 10.1038/nature17436. Epub 2016 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验