Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA.
Department of Chemistry, University of California Berkeley, Berkeley, California, USA.
mBio. 2019 Sep 24;10(5):e01303-19. doi: 10.1128/mBio.01303-19.
Cobamides, a uniquely diverse family of enzyme cofactors related to vitamin B, are produced exclusively by bacteria and archaea but used in all domains of life. While it is widely accepted that cobamide-dependent organisms require specific cobamides for their metabolism, the biochemical mechanisms that make cobamides functionally distinct are largely unknown. Here, we examine the effects of cobamide structural variation on a model cobamide-dependent enzyme, methylmalonyl coenzyme A (CoA) mutase (MCM). The binding affinity of MCM for cobamides can be dramatically influenced by small changes in the structure of the lower ligand of the cobamide, and binding selectivity differs between bacterial orthologs of MCM. In contrast, variations in the lower ligand have minor effects on MCM catalysis. Bacterial growth assays demonstrate that cobamide requirements of MCM largely correlate with cobamide dependence. This result underscores the importance of enzyme selectivity in the cobamide-dependent physiology of bacteria. Cobamides, including vitamin B, are enzyme cofactors used by organisms in all domains of life. Cobamides are structurally diverse, and microbial growth and metabolism vary based on cobamide structure. Understanding cobamide preference in microorganisms is important given that cobamides are widely used and appear to mediate microbial interactions in host-associated and aquatic environments. Until now, the biochemical basis for cobamide preferences was largely unknown. In this study, we analyzed the effects of the structural diversity of cobamides on a model cobamide-dependent enzyme, methylmalonyl-CoA mutase (MCM). We found that very small changes in cobamide structure could dramatically affect the binding affinity of cobamides to MCM. Strikingly, cobamide-dependent growth of a model bacterium, , largely correlated with the cofactor binding selectivity of MCM, emphasizing the importance of cobamide-dependent enzyme selectivity in bacterial growth and cobamide-mediated microbial interactions.
钴胺素,一种独特多样的酶辅因子家族,与维生素 B 有关,仅由细菌和古菌产生,但在所有生命领域都被使用。虽然人们普遍认为依赖 cobamide 的生物体需要特定的 cobamides 来进行代谢,但使 cobamides 在功能上具有区别的生化机制在很大程度上仍是未知的。在这里,我们研究了 cobamide 结构变化对模型 cobamide 依赖性酶,甲基丙二酰辅酶 A (CoA) 变位酶 (MCM) 的影响。MCM 与 cobamides 的结合亲和力可以通过 cobamide 下配体结构的微小变化而显著影响,并且细菌 MCM 的同源物之间的结合选择性也不同。相比之下,下配体的变化对 MCM 催化的影响较小。细菌生长测定表明,MCM 的 cobamide 需求在很大程度上与 cobamide 的依赖性相关。这一结果强调了酶选择性在细菌 cobamide 依赖性生理学中的重要性。钴胺素,包括维生素 B,是所有生命领域的生物体使用的酶辅因子。钴胺素结构多样,微生物的生长和代谢因 cobamide 结构而异。鉴于 cobamides 被广泛使用并且似乎在宿主相关和水生环境中调节微生物相互作用,了解微生物对 cobamides 的偏好是很重要的。到目前为止,cobamide 偏好的生化基础在很大程度上仍是未知的。在这项研究中,我们分析了 cobamides 结构多样性对模型 cobamide 依赖性酶,甲基丙二酰辅酶 A 变位酶 (MCM) 的影响。我们发现 cobamide 结构的非常小变化可以显著影响 cobamides 与 MCM 的结合亲和力。引人注目的是,模型细菌的 cobamide 依赖性生长在很大程度上与 MCM 的辅因子结合选择性相关,强调了 cobamide 依赖性酶选择性在细菌生长和 cobamide 介导的微生物相互作用中的重要性。