Suppr超能文献

评估强度归一化对磁共振图像合成的影响。

Evaluating the Impact of Intensity Normalization on MR Image Synthesis.

作者信息

Reinhold Jacob C, Dewey Blake E, Carass Aaron, Prince Jerry L

机构信息

Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA 21218.

F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA, 21205.

出版信息

Proc SPIE Int Soc Opt Eng. 2019 Mar;10949. doi: 10.1117/12.2513089.

Abstract

Image synthesis learns a transformation from the intensity features of an input image to yield a different tissue contrast of the output image. This process has been shown to have application in many medical image analysis tasks including imputation, registration, and segmentation. To carry out synthesis, the intensities of the input images are typically scaled-i.e., normalized-both in training to learn the transformation and in testing when applying the transformation, but it is not presently known what type of input scaling is optimal. In this paper, we consider seven different intensity normalization algorithms and three different synthesis methods to evaluate the impact of normalization. Our experiments demonstrate that intensity normalization as a preprocessing step improves the synthesis results across all investigated synthesis algorithms. Furthermore, we show evidence that suggests intensity normalization is vital for successful deep learning-based MR image synthesis.

摘要

图像合成学习从输入图像的强度特征进行转换,以产生输出图像的不同组织对比度。这一过程已被证明在许多医学图像分析任务中都有应用,包括插补、配准和分割。为了进行合成,输入图像的强度通常在训练中进行缩放(即归一化)以学习转换,在测试中应用转换时也进行缩放,但目前尚不清楚哪种类型的输入缩放是最优的。在本文中,我们考虑了七种不同的强度归一化算法和三种不同的合成方法,以评估归一化的影响。我们的实验表明,强度归一化作为预处理步骤可改善所有研究的合成算法的合成结果。此外,我们还表明有证据表明强度归一化对于基于深度学习的磁共振图像合成的成功至关重要。

相似文献

5
PATCH BASED INTENSITY NORMALIZATION OF BRAIN MR IMAGES.基于补丁的脑部磁共振图像强度归一化
Proc IEEE Int Symp Biomed Imaging. 2013 Dec 31;2013:342-345. doi: 10.1109/ISBI.2013.6556482.
8
3D cerebral MR image segmentation using multiple-classifier system.使用多分类器系统的3D脑磁共振图像分割
Med Biol Eng Comput. 2017 Mar;55(3):353-364. doi: 10.1007/s11517-016-1483-z. Epub 2016 May 20.
9
A novel framework for MR image segmentation and quantification by using MedGA.利用 MedGA 实现磁共振图像分割和定量分析的新框架
Comput Methods Programs Biomed. 2019 Jul;176:159-172. doi: 10.1016/j.cmpb.2019.04.016. Epub 2019 Apr 17.
10
Robust generative asymmetric GMM for brain MR image segmentation.用于脑部磁共振图像分割的稳健生成式非对称高斯混合模型
Comput Methods Programs Biomed. 2017 Nov;151:123-138. doi: 10.1016/j.cmpb.2017.08.017. Epub 2017 Aug 24.

引用本文的文献

本文引用的文献

3
Multimodal MR Synthesis via Modality-Invariant Latent Representation.基于模态不变潜在表示的多模态磁共振合成。
IEEE Trans Med Imaging. 2018 Mar;37(3):803-814. doi: 10.1109/TMI.2017.2764326. Epub 2017 Oct 18.
5
Random forest regression for magnetic resonance image synthesis.用于磁共振图像合成的随机森林回归
Med Image Anal. 2017 Jan;35:475-488. doi: 10.1016/j.media.2016.08.009. Epub 2016 Aug 31.
8
Statistical normalization techniques for magnetic resonance imaging.用于磁共振成像的统计归一化技术。
Neuroimage Clin. 2014 Aug 15;6:9-19. doi: 10.1016/j.nicl.2014.08.008. eCollection 2014.
9
MR to CT Registration of Brains using Image Synthesis.使用图像合成技术实现脑部的磁共振成像到计算机断层扫描配准
Proc SPIE Int Soc Opt Eng. 2014 Mar 21;9034. doi: spie.org/Publications/Proceedings/Paper/10.1117/12.2043954.
10
Is synthesizing MRI contrast useful for inter-modality analysis?合成磁共振成像造影剂对多模态分析有用吗?
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):631-8. doi: 10.1007/978-3-642-40811-3_79.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验