IEEE Trans Med Imaging. 2018 Mar;37(3):803-814. doi: 10.1109/TMI.2017.2764326. Epub 2017 Oct 18.
We propose a multi-input multi-output fully convolutional neural network model for MRI synthesis. The model is robust to missing data, as it benefits from, but does not require, additional input modalities. The model is trained end-to-end, and learns to embed all input modalities into a shared modality-invariant latent space. These latent representations are then combined into a single fused representation, which is transformed into the target output modality with a learnt decoder. We avoid the need for curriculum learning by exploiting the fact that the various input modalities are highly correlated. We also show that by incorporating information from segmentation masks the model can both decrease its error and generate data with synthetic lesions. We evaluate our model on the ISLES and BRATS data sets and demonstrate statistically significant improvements over state-of-the-art methods for single input tasks. This improvement increases further when multiple input modalities are used, demonstrating the benefits of learning a common latent space, again resulting in a statistically significant improvement over the current best method. Finally, we demonstrate our approach on non skull-stripped brain images, producing a statistically significant improvement over the previous best method. Code is made publicly available at https://github.com/agis85/multimodal_brain_synthesis.
我们提出了一种用于 MRI 合成的多输入多输出全卷积神经网络模型。该模型对缺失数据具有鲁棒性,因为它受益于但不要求额外的输入模式。该模型是端到端训练的,它学习将所有输入模式嵌入到共享的模态不变潜在空间中。然后,将这些潜在表示组合成单个融合表示,并使用学习到的解码器将其转换为目标输出模式。我们通过利用各种输入模式高度相关的事实来避免课程学习的需要。我们还表明,通过合并分割掩模的信息,模型可以降低误差并生成具有合成病变的合成数据。我们在 ISLES 和 BRATS 数据集上评估了我们的模型,并证明了与单输入任务的最新方法相比,我们的模型在统计学上有显著的改进。当使用多个输入模式时,这种改进进一步增加,这再次证明了学习共同潜在空间的好处,并且与当前最佳方法相比也有统计学上的显著提高。最后,我们在非颅骨剥离的脑图像上展示了我们的方法,与之前的最佳方法相比有了显著的提高。代码在 https://github.com/agis85/multimodal_brain_synthesis 上公开提供。