Suppr超能文献

基于模态不变潜在表示的多模态磁共振合成。

Multimodal MR Synthesis via Modality-Invariant Latent Representation.

出版信息

IEEE Trans Med Imaging. 2018 Mar;37(3):803-814. doi: 10.1109/TMI.2017.2764326. Epub 2017 Oct 18.

Abstract

We propose a multi-input multi-output fully convolutional neural network model for MRI synthesis. The model is robust to missing data, as it benefits from, but does not require, additional input modalities. The model is trained end-to-end, and learns to embed all input modalities into a shared modality-invariant latent space. These latent representations are then combined into a single fused representation, which is transformed into the target output modality with a learnt decoder. We avoid the need for curriculum learning by exploiting the fact that the various input modalities are highly correlated. We also show that by incorporating information from segmentation masks the model can both decrease its error and generate data with synthetic lesions. We evaluate our model on the ISLES and BRATS data sets and demonstrate statistically significant improvements over state-of-the-art methods for single input tasks. This improvement increases further when multiple input modalities are used, demonstrating the benefits of learning a common latent space, again resulting in a statistically significant improvement over the current best method. Finally, we demonstrate our approach on non skull-stripped brain images, producing a statistically significant improvement over the previous best method. Code is made publicly available at https://github.com/agis85/multimodal_brain_synthesis.

摘要

我们提出了一种用于 MRI 合成的多输入多输出全卷积神经网络模型。该模型对缺失数据具有鲁棒性,因为它受益于但不要求额外的输入模式。该模型是端到端训练的,它学习将所有输入模式嵌入到共享的模态不变潜在空间中。然后,将这些潜在表示组合成单个融合表示,并使用学习到的解码器将其转换为目标输出模式。我们通过利用各种输入模式高度相关的事实来避免课程学习的需要。我们还表明,通过合并分割掩模的信息,模型可以降低误差并生成具有合成病变的合成数据。我们在 ISLES 和 BRATS 数据集上评估了我们的模型,并证明了与单输入任务的最新方法相比,我们的模型在统计学上有显著的改进。当使用多个输入模式时,这种改进进一步增加,这再次证明了学习共同潜在空间的好处,并且与当前最佳方法相比也有统计学上的显著提高。最后,我们在非颅骨剥离的脑图像上展示了我们的方法,与之前的最佳方法相比有了显著的提高。代码在 https://github.com/agis85/multimodal_brain_synthesis 上公开提供。

相似文献

1
Multimodal MR Synthesis via Modality-Invariant Latent Representation.
IEEE Trans Med Imaging. 2018 Mar;37(3):803-814. doi: 10.1109/TMI.2017.2764326. Epub 2017 Oct 18.
2
Latent Correlation Representation Learning for Brain Tumor Segmentation With Missing MRI Modalities.
IEEE Trans Image Process. 2021;30:4263-4274. doi: 10.1109/TIP.2021.3070752. Epub 2021 Apr 14.
3
Joint learning-based feature reconstruction and enhanced network for incomplete multi-modal brain tumor segmentation.
Comput Biol Med. 2023 Sep;163:107234. doi: 10.1016/j.compbiomed.2023.107234. Epub 2023 Jul 4.
4
5
Learning Cross-Modality Representations From Multi-Modal Images.
IEEE Trans Med Imaging. 2019 Feb;38(2):638-648. doi: 10.1109/TMI.2018.2868977. Epub 2018 Sep 6.
6
Multi-Modal Modality-Masked Diffusion Network for Brain MRI Synthesis With Random Modality Missing.
IEEE Trans Med Imaging. 2024 Jul;43(7):2587-2598. doi: 10.1109/TMI.2024.3368664. Epub 2024 Jul 1.
7
Bi-Modality Medical Image Synthesis Using Semi-Supervised Sequential Generative Adversarial Networks.
IEEE J Biomed Health Inform. 2020 Mar;24(3):855-865. doi: 10.1109/JBHI.2019.2922986. Epub 2019 Jun 14.
9
MSFR-Net: Multi-modality and single-modality feature recalibration network for brain tumor segmentation.
Med Phys. 2023 Apr;50(4):2249-2262. doi: 10.1002/mp.15933. Epub 2022 Aug 23.
10
Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis.
Neuroimage. 2014 Nov 1;101:569-82. doi: 10.1016/j.neuroimage.2014.06.077. Epub 2014 Jul 18.

引用本文的文献

1
Robust deep MRI contrast synthesis using a prior-based and task-oriented 3D network.
Imaging Neurosci (Camb). 2025 Aug 26;3. doi: 10.1162/IMAG.a.116. eCollection 2025.
5
MODALITY-AGNOSTIC LEARNING FOR MEDICAL IMAGE SEGMENTATION USING MULTI-MODALITY SELF-DISTILLATION.
Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635881. Epub 2024 Aug 22.
8
Multi-sequence generative adversarial network: better generation for enhanced magnetic resonance imaging images.
Front Comput Neurosci. 2024 May 22;18:1365238. doi: 10.3389/fncom.2024.1365238. eCollection 2024.
9
Enhancing Modality-Agnostic Representations via Meta-learning for Brain Tumor Segmentation.
Proc IEEE Int Conf Comput Vis. 2023 Oct;2023:21358-21368. doi: 10.1109/iccv51070.2023.01958.
10
Unified Brain MR-Ultrasound Synthesis using Multi-Modal Hierarchical Representations.
Med Image Comput Comput Assist Interv. 2023 Oct 13;2023:448-458. doi: 10.1007/978-3-031-43999-5_43.

本文引用的文献

1
Registration of Pathological Images.
Simul Synth Med Imaging. 2016 Oct;9968:97-107. doi: 10.1007/978-3-319-46630-9_10. Epub 2016 Sep 23.
2
Patch Based Synthesis of Whole Head MR Images: Application to EPI Distortion Correction.
Simul Synth Med Imaging. 2016 Oct;9968:146-156. doi: 10.1007/978-3-319-46630-9_15. Epub 2016 Sep 23.
3
Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation.
Med Image Anal. 2017 Feb;36:61-78. doi: 10.1016/j.media.2016.10.004. Epub 2016 Oct 29.
4
Random forest regression for magnetic resonance image synthesis.
Med Image Anal. 2017 Jan;35:475-488. doi: 10.1016/j.media.2016.08.009. Epub 2016 Aug 31.
5
Extended Modality Propagation: Image Synthesis of Pathological Cases.
IEEE Trans Med Imaging. 2016 Dec;35(12):2598-2608. doi: 10.1109/TMI.2016.2589760. Epub 2016 Jul 9.
6
Fully Convolutional Networks for Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
7
Correlational Neural Networks.
Neural Comput. 2016 Feb;28(2):257-85. doi: 10.1162/NECO_a_00801. Epub 2015 Dec 14.
8
Estimating CT Image From MRI Data Using Structured Random Forest and Auto-Context Model.
IEEE Trans Med Imaging. 2016 Jan;35(1):174-83. doi: 10.1109/TMI.2015.2461533. Epub 2015 Jul 28.
9
MR image synthesis by contrast learning on neighborhood ensembles.
Med Image Anal. 2015 Aug;24(1):63-76. doi: 10.1016/j.media.2015.05.002. Epub 2015 May 18.
10
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验