Suppr超能文献

多药耐药结核病不良结局预测模型。

Predictive model of unfavorable outcomes for multidrug-resistant tuberculosis.

机构信息

Universidade de São Paulo. Escola de Enfermagem de Ribeirão Preto. Ribeirão Preto, SP, Brasil.

Universidade de São Paulo. Faculdade de Medicina de Ribeirão Preto. Ribeirão Preto, SP, Brasil.

出版信息

Rev Saude Publica. 2019 Sep 23;53:77. doi: 10.11606/s1518-8787.2019053001151. eCollection 2019.

Abstract

OBJECTIVE

to analyze the temporal trend, identify the factors related and elaborate a predictive model for unfavorable treatment outcomes for multidrug-resistant tuberculosis (MDR-TB).

METHODS

Retrospective cohort study with all cases diagnosed with MDR-TB between the years 2006 and 2015 in the state of São Paulo. The data were collected from the state system of TB cases notifications (TB-WEB). The temporal trend analyzes of treatment outcomes was performed through the Prais-Winsten analysis. In order to verify the factors related to the unfavorable outcomes, abandonment, death with basic cause TB and treatment failure, the binary logistic regression was used. Pictorial representations of the factors related to treatment outcome and their prognostic capacity through the nomogram were elaborated.

RESULTS

Both abandonment and death have a constant temporal tendency, whereas the failure showed it as decreasing. Regarding the risk factors for such outcomes, using illicit drugs doubled the odds for abandonment and death. Besides that, being diagnosed in emergency units or during hospitalizations was a risk factor for death. On the contrary, having previous multidrug-resistant treatments reduced the odds for the analyzed outcomes by 33%. The nomogram presented a predictive model with 65% accuracy for dropouts, 70% for deaths and 80% for failure.

CONCLUSIONS

The modification of the current model of care is an essential factor for the prevention of unfavorable outcomes. Through predictive models, as presented in this study, it is possible to develop patient-centered actions, considering their risk factors and increasing the chances for cure.

摘要

目的

分析时间趋势,确定相关因素,并建立耐多药结核病(MDR-TB)不良治疗结局的预测模型。

方法

这是一项回顾性队列研究,纳入了 2006 年至 2015 年在圣保罗州诊断为 MDR-TB 的所有病例。数据来自州结核病病例报告系统(TB-WEB)。通过 Prais-Winsten 分析对治疗结局的时间趋势进行分析。为了验证与不良结局相关的因素,包括放弃治疗、因基本病因 TB 死亡和治疗失败,采用二元逻辑回归分析。通过列线图阐述了与治疗结局相关的因素及其预后能力的图示表示。

结果

放弃治疗和死亡均呈现出持续的时间趋势,而治疗失败则呈现出下降的趋势。在与这些结局相关的风险因素中,使用非法药物使放弃治疗和死亡的几率增加了一倍。此外,在急诊部门或住院期间诊断为结核病是死亡的风险因素。相反,以前有过耐多药治疗则会使分析结局的几率降低 33%。列线图预测模型对辍学的准确率为 65%,对死亡的准确率为 70%,对失败的准确率为 80%。

结论

改变当前的护理模式是预防不良结局的关键因素。通过预测模型,如本研究中所示,可以制定以患者为中心的治疗方案,考虑其风险因素,增加治愈的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfc0/6752648/e0c713e22eb3/1518-8787-rsp-53-77-gf01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验