Suppr超能文献

分布式前运动网络中的非线性多模态整合控制昆虫腿部的本体感受反射增益。

Non-linear multimodal integration in a distributed premotor network controls proprioceptive reflex gain in the insect leg.

机构信息

Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany.

Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany; Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.

出版信息

Curr Biol. 2022 Sep 12;32(17):3847-3854.e3. doi: 10.1016/j.cub.2022.07.005. Epub 2022 Jul 26.

Abstract

Producing context-appropriate motor acts requires integrating multiple sensory modalities. Presynaptic inhibition of proprioceptive afferent neurons and afferents of different modalities targeting the same motor neurons (MNs) underlies some of this integration. However, in most systems, an interneuronal network is interposed between sensory afferents and MNs. How these networks contribute to this integration, particularly at single-neuron resolution, is little understood. Context-specific integration of load and movement sensory inputs occurs in the stick insect locomotory system, and both inputs feed into a network of premotor nonspiking interneurons (NSIs). We analyzed how load altered movement signal processing in the stick insect femur-tibia (FTi) joint control system by tracing the interaction of FTi movement (femoral chordotonal organ [fCO]) and load (tibial campaniform sensilla [CS]) signals through the NSI network to the slow extensor tibiae (SETi) MN, the extensor MN primarily active in non-walking animals. On the afferent level, load reduced movement signal gain by presynaptic inhibition. In the NSI network, graded responses to movement and load inputs summed nonlinearly, increasing the gain of NSIs opposing movement-induced reflexes and thus decreasing the SETi and extensor tibiae muscle movement reflex responses. Gain modulation was movement-parameter specific and required presynaptic inhibition. These data suggest that gain changes in distributed premotor networks, specifically the relative weighting of antagonistic pathways, could be a general mechanism by which multiple sensory modalities are integrated to generate context-appropriate motor activity.

摘要

产生情境适当的运动行为需要整合多种感觉模式。 对靶向相同运动神经元 (MNs) 的本体感受传入神经元和不同感觉模式的传入神经进行突触前抑制是这种整合的基础。 然而,在大多数系统中,感觉传入神经和 MNs 之间存在中间神经元网络。 这些网络如何在整合中发挥作用,特别是在单个神经元分辨率方面,人们知之甚少。 在棒状昆虫运动系统中,负载和运动感觉输入会发生特定于情境的整合,并且这两种输入都进入了运动前非放电中间神经元 (NSI) 的网络。 我们通过追踪 FTi 运动(股骨弦音器 [fCO])和负载(胫骨杯形感觉器 [CS])信号通过 NSI 网络到慢伸肌胫骨(SETi)MN 的相互作用,分析了负载如何改变 FTi 关节控制系统中的运动信号处理,SETi MN 是主要在非行走动物中活跃的伸肌 MN。 在传入水平,负载通过突触前抑制降低了运动信号增益。 在 NSI 网络中,运动和负载输入的分级反应非线性地叠加,增加了与运动引起的反射相反的 NSI 的增益,从而降低了 SETi 和伸肌胫骨肌肉运动反射反应。 增益调制是运动参数特异性的,需要突触前抑制。 这些数据表明,分布式运动前网络中的增益变化,特别是拮抗途径的相对权重,可能是整合多种感觉模式以产生情境适当的运动活动的一般机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验