Suppr超能文献

复杂光照条件下的水位视觉测量。

Visual Measurement of Water Level under Complex Illumination Conditions.

机构信息

College of Computer and Information Engineering, Hohai University, Nanjing 211100, China.

出版信息

Sensors (Basel). 2019 Sep 24;19(19):4141. doi: 10.3390/s19194141.

Abstract

Image-based water level measurement is a visual-sensing technique which automatically inspects the reading of the water line via image processing instead of the human eye. It can be realized easily on an existing video surveillance system and has advantages like low cost, non-contact, as well as results that are verifiable. It has the potential to be widely used in flood and waterlogging monitoring, while facing the challenge that water-line detection under complex natural or artificial illumination conditions is quite difficult in field applications. To handle this problem, a method is proposed assuming that the water line is generally located on the row with the largest local change of gray or edge features in the image of the water gauge. The water line is determined by coarse-to-fine detection of the position of the maximum mean difference (MMD) of the horizontal projections of gray and edge images. Image-based flow-level measurement systems were developed at two measurement sites. In situ comparative experiments were conducted with the float-type stage gauge and other image-based methods. The results show that the fusion of gray and edge features can overcome the shortcomings of single feature methods under complex illumination conditions such as dim light, glares, shadows and artificial night lighting. A coarse-to-fine strategy utilizes the periodicity of the surface pattern distribution of the standard bicolor water gauge, which improves the reliability of water-line detection. The resolution and accuracy of water-level measurement are 1 mm and 1 cm, respectively. In particular, the MMD value is efficient at identifying extremely unfavorable conditions and reducing gross errors.

摘要

基于图像的水位测量是一种视觉传感技术,它通过图像处理自动检测水位读数,而不是通过人眼。它可以很容易地在现有的视频监控系统上实现,具有成本低、非接触以及结果可验证等优点。它有可能被广泛应用于洪水和涝灾监测,但面临的挑战是,在现场应用中,复杂的自然或人工照明条件下的水位检测非常困难。为了解决这个问题,提出了一种方法,假设水位通常位于水位计图像中灰度或边缘特征局部变化最大的行上。通过对灰度和边缘图像水平投影的最大均值差(MMD)位置进行粗到细的检测来确定水位。在两个测量地点开发了基于图像的流量测量系统。与浮子式测位计和其他基于图像的方法进行了现场对比实验。结果表明,灰度和边缘特征的融合可以克服在弱光、眩光、阴影和人工夜间照明等复杂光照条件下单一特征方法的缺点。一种由粗到细的策略利用了双色标准水位计表面图案分布的周期性,提高了水位检测的可靠性。水位测量的分辨率和精度分别为 1 毫米和 1 厘米,特别是 MMD 值在识别极其不利的条件和减少粗大误差方面非常有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df80/6806611/d9f919f230a4/sensors-19-04141-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验