Yu Yanbao, Tsitrin Tamara, Bekele Shiferaw, Thovarai Vishal, Torralba Manolito G, Singh Harinder, Wolcott Randall, Doerfert Sebastian N, Sizova Maria V, Epstein Slava S, Pieper Rembert
J. Craig Venter Institute, Rockville, MD, USA.
J. Craig Venter Institute, La Jolla, CA, USA.
Biochem Insights. 2019 Sep 19;12:1178626419875089. doi: 10.1177/1178626419875089. eCollection 2019.
() and () are gram-positive bacteria belonging to the family Aerococcaceae and colonize the human immunocompromised and catheterized urinary tract. We identified both pathogens in polymicrobial urethral catheter biofilms (CBs) with a combination of 16S rDNA sequencing, proteomic analyses, and microbial cultures. Longitudinal sampling of biofilms from serially replaced catheters revealed that each species persisted in the urinary tract of a patient in cohabitation with 1 or more gram-negative uropathogens. The and proteomes revealed active glycolytic, heterolactic fermentation, and peptide catabolic energy metabolism pathways in an anaerobic milieu. A few phosphotransferase system (PTS)-based sugar uptake and oligopeptide ABC transport systems were highly expressed, indicating adaptations to the supply of nutrients in urine and from exfoliating squamous epithelial and urothelial cells. Differences in the vs metabolisms pertained to citrate lyase and utilization and storage of glycogen (evident only in proteomes) and to the enzyme Xfp that degrades d-xylulose-5'-phosphate and the biosynthetic pathways for 2 protein cofactors, pyridoxal 6'-phosphate and 4'-phosphopantothenate (expressed only in proteomes). A predicted ZnuA-like transition metal ion uptake system was identified for while expressed 2 LPXTG-anchored surface proteins, one of which had a predicted pilin D adhesion motif. While these proteins may contribute to fitness and virulence in the human host, it cannot be ruled out that and fill a niche in polymicrobial biofilms without being the direct cause of injury in urothelial tissues.
[细菌名称1]和[细菌名称2]是属于气球菌科的革兰氏阳性菌,可定殖于免疫功能低下和留置导尿管的人体尿道。我们通过16S rDNA测序、蛋白质组分析和微生物培养相结合的方法,在多微生物尿道导管生物膜(CBs)中鉴定出了这两种病原体。对连续更换的导管生物膜进行纵向采样发现,每种菌都与1种或更多种革兰氏阴性尿路病原体共同存在于患者的尿道中。[细菌名称1]和[细菌名称2]的蛋白质组显示,在厌氧环境中存在活跃的糖酵解、异型乳酸发酵和肽分解代谢能量代谢途径。一些基于磷酸转移酶系统(PTS)的糖摄取和寡肽ABC转运系统高度表达,表明其适应了尿液以及脱落的鳞状上皮和尿路上皮细胞中营养物质的供应。[细菌名称1]与[细菌名称2]代谢的差异涉及柠檬酸裂解酶以及糖原的利用和储存(仅在[细菌名称1]的蛋白质组中明显),还涉及降解5'-磷酸木酮糖的Xfp酶以及两种蛋白质辅因子6'-磷酸吡哆醛和4'-磷酸泛酰巯基乙胺的生物合成途径(仅在[细菌名称2]的蛋白质组中表达)。为[细菌名称1]鉴定出了一种预测的类ZnuA过渡金属离子摄取系统,而[细菌名称2]表达了2种LPXTG锚定表面蛋白,其中一种具有预测的菌毛D粘附基序。虽然这些蛋白质可能有助于在人类宿主中生存和致病,但不能排除[细菌名称1]和[细菌名称2]在多微生物生物膜中占据生态位而不是尿路上皮组织损伤的直接原因。